Publications by authors named "Majima E"

Modification with antibodies is a useful strategy for the delivery of nanoparticles to target cells. However, the complexity of the required chemical modifications makes them time-consuming and low efficiency, and the orientation of the antibody is challenging to control. To develop a simple, fast, effective, and orientation-controllable technology, we employed staphylococcal protein A, which can bind to the Fc region of antibodies, as a tool for conjugating antibodies to nanoparticles.

View Article and Find Full Text PDF

Antibody-modified liposomes, immuno-liposomes, can selectively deliver encapsulated drug 'cargos' to cells via the interaction of cell surface proteins with antibodies. However, chemical modification of both the antibodies and phospholipids is required for the preparation of immuno-liposomes for each target protein using conventional methods, which is time-consuming. In the present study, we demonstrated that high-affinity protein A- (Protein A-R28: PAR28) displaying liposomes prepared by the post-insertion of PAR28-conjugated phospholipid through polyethylene glycol (PEG)-linkers (PAR28-PEG-lipo) can undergo rapid modification of antibodies on their surface, and the liposomes can be delivered to cells based on their modified antibodies.

View Article and Find Full Text PDF

Antibodies against cytoplasmic proteins are useful tools that can control cellular function and clarify signaling mechanisms. However, it is difficult to capture proteins inside living cells, and thus appropriate methods for antibody delivery to the cytoplasm of living cells are required. Cell-penetrating materials, such as the TAT-peptide, have received attention for their ability to deliver various cargos into living cells.

View Article and Find Full Text PDF

The relationship between methylmercury (MeHg) exposure and aquaporin (AQP) expression in the brain is currently unknown. To investigate this, we used a common marmoset model of acute MeHg exposure to examine AQP1, AQP4 and AQP11 gene expression. MeHg (1.

View Article and Find Full Text PDF

Mitochondrial ADP/ATP carrier (AAC) is a protein catalyzing the transport of adenine nucleotides across inner mitochondrial membrane. In this review article, we first briefly introduce structural and functional properties of this protein. Next, we describe the results of our recent studies on the difference in the C-terminal region between yeast type 2 AAC isoform and bovine type 1 AAC isoform.

View Article and Find Full Text PDF

Comparison of the amino acid sequence of yeast type 2 ADP/ATP carrier (yAAC2) with that of bovine type 1 AAC (bAAC1) revealed that the N- and C-terminus of yAAC2 are 15- and 6-amino acids longer, respectively, than those of bAAC1. In the present study, we focused on the difference in the C-terminal region between yAAC2 and bAAC1. Deletion of first six residues of C-terminus of yAAC did not markedly affect the function of yAAC2; however, further deletion of 1 amino acid (7th amino acid from the C-terminus) destroyed its function.

View Article and Find Full Text PDF

To study domain organization and movements in the reaction cycle of heavy metal ion pumps, CopA, a bacterial Cu+-ATPase from Thermotoga maritima was cloned, overexpressed, and purified, and then subjected to limited proteolysis using papain. Stable analogs of intermediate states were generated using AMPPCP as a nonhydrolyzable ATP analog and AlFx as a phosphate analog, following conditions established for Ca2+-ATPase (SERCA1). Characteristic digestion patterns obtained for different analog intermediates show that CopA undergoes domain rearrangements very similar to those of SERCA1.

View Article and Find Full Text PDF

To detect structural changes in the second cytosolic loop of the mitochondrial ADP/ATP carrier of Saccharomyces cerevisiae AAC2, we prepared 20 single cysteine mutants by replacing each amino acid in the S213 to L232 region. All single cysteine mutants were fully functional, because they could restore growth on glycerol of a yeast strain lacking functional ADP/ATP carriers. First, these single-Cys mutants were treated with carboxyatractyloside to lock the carrier in the cytosolic state or with bongkrekic acid to generate the matrix state, and then with the membrane-impermeable SH reagent eosin-5-maleimide (EMA) to probe accessibility.

View Article and Find Full Text PDF

A new apoptosis cascade mediated by lysosomal lactoferrin was found in apoptotic liver induced by d-galactosamine. Caspase-3 and lactoferrin were increased in the apoptotic liver cytoplasm and serum transaminases were elevated. Recombinant lactoferrin stimulated procaspase-3 processing at 10(-6)-10(-7)M to an extent similar to that by granzyme B in vitro.

View Article and Find Full Text PDF

The mitochondrial ADP/ATP carrier (AAC) transports substrate by interconversion of its conformation between m- and c-states. The 1st loop facing the matrix (LM1) is extruded into the matrix in the m-state and is suggested to intrude into the mitochondrial membrane on conversion to the c-state conformation [Hashimoto, M., Majima, E.

View Article and Find Full Text PDF

Steric stabilization of the surface of liposomes by a PEG conjugated lipid results in reduced recognition of the liposomes by the cells of the mononuclear phagocyte system and consequently extended their circulation times (t(1/2) approximately 20h in rat). Recently, we reported on the "accelerated blood clearance phenomenon", causing "invisible" PEGylated liposomes to be cleared very rapidly from the circulation upon repeated injection. In addition, we reported that certain serum factor(s) secreted into the blood after the first dose of PEGylated liposomes play an essential role in the phenomenon.

View Article and Find Full Text PDF

To know the structural and functional features of the cytosolic-facing first loop (LC1) including its surrounding region of the mitochondrial ADP/ATP carrier (AAC), we prepared 27 mutants, in which each amino acid residue between residues 106 and 132 of the yeast type 2 AAC (yAAC2) was replaced by a cysteine residue. For mutant preparation, we used a Cys-less AAC mutant, in which all four intrinsic cysteine residues were substituted with alanine residues, as a template [Hatanaka, T., Kihira, Y.

View Article and Find Full Text PDF

To investigate the structural and functional features of the second alpha-helical transmembrane segment (TM2) of the mitochondrial ADP/ATP carrier (AAC), we adopted cysteine scanning mutagenesis analysis. Single-cysteine mutations of yeast AAC were systematically introduced at residues 98-106 in TM2, and the mutants were treated with the fluorescent SH reagent eosin-5-maleimide (EMA). EMA modified different amino acid residues of alpha-helical TM2 between the two distinct carrier conformations, called the m-state and the c-state, in which the substrate recognition site faces the matrix and cytosol, respectively.

View Article and Find Full Text PDF

We found new inhibitory function of lactoferrin and beta-casein in milk against cysteine proteases using reverse zymography. The inhibition of cathepsin L by lactoferrin was strongest and the inhibition kinetics were of a non-competitive type. Heat denatured lactoferrin lost the inhibitory activity completely, therefore the tertiary structure is essential to show the inhibition.

View Article and Find Full Text PDF

We purified human plasma lysophospholipase D that produces physiologically active lysophosphatidic acid and showed that it is a soluble form of autotaxin, an ecto-nucleotide pyrophosphatase/phosphodiesterase, originally found as a tumor cell motility-stimulating factor. Its lower K(m) value for a lysophosphatidylcholine than that for a synthetic substrate of nucleotide suggests that lysophosphatidylcholine is a more likely physiological substrate for autotaxin and that its predicted physiological and pathophysiological functions could be mediated by its activity to produce lysophosphate acid, an intercellular mediator. Recombinant autotaxin was found to have lysophospholipase D activity; its substrate specificity and metal ion requirement were the same as those of the purified plasma enzyme.

View Article and Find Full Text PDF

To understand the transport mechanism of the bovine heart mitochondrial ADP/ATP carrier at the atomic level, we studied the four-dimensional features of the interaction of various purine nucleotides with the adenine nucleotide binding region (ABR) consisting of Arg(151)-Asp(167) in the second loop facing the matrix side. After three-dimensional modeling of ABR based on the experimental results, its structural changes on interaction with purine nucleotides were examined by molecular dynamics computation at 300 K. ATP/ADP were translocated to a considerable degree from the matrix side to the inner membrane region accompanied by significant backbone conformational changes, whereas neither appreciable translocation nor a significant conformational change was observed with the untransportable nucleotides AMP/GTP.

View Article and Find Full Text PDF

Effects of the cross-linking catalyst copper-o-phenanthroline [Cu(OP)2] on the bovine heart mitochondrial ADP/ATP carrier solubilized with Triton X-100 were studied under various conditions. Without detergent treatment, Cu(OP)2 specifically catalyzed the formation of intermolecular disulfide bridges in submitochondrial particles between two Cys56 residues in the first loop facing the matrix space of the dimeric carrier [Majima, E., Ikawa, K.

View Article and Find Full Text PDF

To characterize structural features of the regions of the yeast type 2 ADP/ATP carrier (yAAC2) facing the cytosol, we prepared its Cys-less mutant, in which all four cysteine residues were replaced by alanine residues. The Cys-less mutant functioned like native yAAC2, showing that the cysteine residues are not essential. We then prepared cysteine mutants by substituting Ser(21) in the putative N-terminal region, Ala(124) and Ser(222) in the first and second loops facing cytosol, respectively, and Leu(312) in the C-terminal region of the Cys-less mutant for cysteine and examined the labeling of the substituted cysteine residues of the mutants with the membrane-impermeable SH reagent eosin-5-maleimide (EMA) from the cytosol.

View Article and Find Full Text PDF

As a first step to characterize the unknown functional properties of the human mitochondrial ADP/ATP carrier (AAC), we tried to express human type 1 AAC (hAAC1) in Saccharomyces cerevisiae. Expression of hAAC1 in yeast mitochondrial membrane was very low, although its transcript level was high. Its expression was improved greatly by replacement of its N-terminal region with the corresponding region of yeast type 2 AAC (yAAC2), as observed with the bovine type 1 AAC (bAAC1).

View Article and Find Full Text PDF

The low-level expression of the bovine heart mitochondrial ADP/ATP carrier (bovine type 1 ADP/ATP carrier (bAAC1)) in the yeast mitochondrial membrane is significantly improved by replacement of its N-terminal region with corresponding regions of the yeast type 1 and 2 carriers (yAAC1 and yAAC2) (Hashimoto, M., Shinohara, Y., Majima, E.

View Article and Find Full Text PDF

The amine/SH-modifying fluorescein 5-isothiocyanate (FITC) specifically labeled Lys(185) in the putative membrane-spanning region of the phosphate carrier from both the cytosolic and matrix sides of bovine heart mitochondria at 0 degrees C and pH 7.2, and the labeling inhibited the phosphate transport. Nonmodifying fluorescein derivatives having similar structural features to those of ADP and ATP (Majima, E.

View Article and Find Full Text PDF

The effect of the SH-reagent methyl methanethiosulfonate (MMTS) on the ADP/ATP carrier of bovine heart mitochondria was studied under various conditions. MMTS labeled predominately Cys(56) in the first loop facing the matrix (loop M1), and the labeling inhibited ADP transport via the carrier. The transport inhibition was found to be due to fixation of the carrier in the m-state conformation.

View Article and Find Full Text PDF

The mitochondrial ADP/ATP carrier (AAC) is believed to function as a dimer. To characterize the oligomeric state of the yeast type 2 AAC (yAAC2), we tried to express its tandem-repeated homodimer, in which the C-terminus of the first repeat was fused to the N-terminus of the second repeat, in yeast mitochondria. The tandem dimer was expressed in the mitochondrial membrane at the same level as that of yAAC2, being inserted into the mitochondrial membrane as in yAAC2, and it showed very similar transport activity to that of yAAC2.

View Article and Find Full Text PDF

The effects of six thiol-specific cross-linker dimaleimides, in which the distance of the two maleimide groups ranged from 7.7 to 16. 8 A, on bovine heart mitochondria were studied at pH 7.

View Article and Find Full Text PDF