Philos Trans A Math Phys Eng Sci
January 2024
A data-driven approach is developed to predict the fracture load of a notched component. To do so, more than 1500 fracture tests (507 unique experimental data points) on mixed-mode I/II loading of notched brittle samples were collected from the literature. After pre-processing the raw data, six features of maximum tangential stress [Formula: see text], maximum tangential stress angle [Formula: see text], ultimate tensile strength [Formula: see text], fracture toughness [Formula: see text], notch opening angle [Formula: see text] and notch tip radius [Formula: see text] were selected by using the neighbourhood component analysis (NCA) technique.
View Article and Find Full Text PDFIn this research, the fracture behavior of brittle specimens weakened by V-shaped notches with end holes (VO-notches) is studied. First, an experimental investigation is conducted to evaluate the effect of VO-notches on fracture behavior. To this end, VO-notched samples of PMMA are made and exposed to pure opening mode loading, pure tearing mode loading, and some combinations of these two loading types.
View Article and Find Full Text PDFDue to the wide scope of applications of additive manufacturing (AM) in making final products, the mechanical strength of AM parts has become very important. Therefore, different tests are being developed to determine the structural integrity of three-dimensional printed components. In this respect, the pin-bearing test is designed to evaluate the response of a fastener, plate, and hole to stress.
View Article and Find Full Text PDFOne of the most common loading conditions that bonded joints experience in service is repeated impact. Despite the destructive effects of impact fatigue, the behavior of metal-composite bonded joints subjected to repeated impact loads has rarely been studied in the literature. Therefore, it is of utmost importance to pay attention to this phenomenon on the one hand and to find solutions to improve the impact fatigue life of bonded composite metal components on the other hand.
View Article and Find Full Text PDFSpruce wood () is a highly orthotropic material whose fracture behavior in the presence of U-shaped notches and under combined tensile-tearing loading (so-called mixed-mode I/III loading) is analyzed in this work. Thus, several tests are carried out on U-notched samples with different notch tip radii (1 mm, 2 mm, and 4 mm) under various combinations of loading modes I and III (pure mode I, pure mode III, and three mixed-mode I/III loadings), from which both the experimental fracture loads and the fracture angles of the specimens are obtained. Because of the linear elastic behavior of the spruce wood, the point stress (PS) and mean stress (MS) methods, both being stress-based criteria, are used in combination with the Virtual Isotropic Material Concept (VIMC) for predicting the fracture loads and the fracture angles.
View Article and Find Full Text PDFFabrication based on additive manufacturing (AM) process from a three-dimensional (3D) model has received significant attention in the past few years. Although 3D printing was introduced for production of prototypes, it has been currently used for fabrication of end-use products. Therefore, the mechanical behavior and strength of additively manufactured parts has become of significant importance.
View Article and Find Full Text PDFThis paper gathers experimental and theoretical investigations about both the geometry-dependent fracture initiation angle and the fracture strength in VO-notched polymethyl methacrylate (PMMA) specimens under mode I loading conditions. The numerical analyses revealed that despite the application of pure mode I loading on the geometrically symmetric VO-notched samples, the maximum tangential stress occurs at two points symmetrically placed on either side of the notch bisector line. The experimental tests performed on some specimens showed that a crack does not necessarily propagate along the notch bisector line.
View Article and Find Full Text PDFThis paper attempts to validate the application of the Virtual Isotropic Material Concept (VIMC) in combination with the average strain energy density (ASED) criterion to predict the critical load in notched laminated composites. This methodology was applied to E/glass-epoxy-laminated composites containing U-notches. For this purpose, a series of fracture test data recently published in the literature on specimens with different notch tip radii, lay-up configurations, and a number of plies were employed.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
March 2020
Dental materials are known as efficient tools to revive the functionality and integrity of decayed/missing tooth structure. Being frequently subjected to different mixtures of tensile and shear loads accompanied by temperature changes and suffering from pre-existing voids and imperfect interfaces at the same time, dental restorations and prostheses are found to be susceptible to crack initiation and growth. In this paper, fracture properties of three dental biomaterials namely polymethylmethacrylate (PMMA), 75Sr and 75Sr10 undergoing mixed tensile-shear loads are investigated.
View Article and Find Full Text PDFComposite structures are made of multidirectional (MD) fiber-reinforced polymer (FRP) composite laminates, which fail due to multiple damages in matrix, interface, and fiber constituents at different scales. The yield point of a unidirectional FRP composite is assumed as the lamina strength limit representing the damage initiation phenomena, while yielding of MD composites in structural applications are not quantified due to the complexity of the sequence of damage evolutions in different laminas dependent on their angle and specification. This paper proposes a new method to identify the yield point of MD composite structures based on the evolution of the damage dissipation energy (DDE).
View Article and Find Full Text PDFDespite wide industrial applications of Bis-GMA polymer, very few studies are available about the material classification, mechanical properties, and behavior of this material. In this study, the compressive behavior of Bis-GMA polymer was studied using different hyperelastic constitutive models through a hybrid experimental-computational process. Standard uniaxial compression tests were conducted to extract the mechanical behavior and structural response of the Bis-GMA polymer.
View Article and Find Full Text PDFBackground: Stenting has been proposed as an effective treatment to restore blood flow in obstructed arteries by plaques. Although several modified designs for stents have been suggested, most designs have the risk of disturbing blood flow.
Objective: The main objective is to propose a stent design to attain a uniform lumen section after stent deployment.
Introduction: Many studies have been performed to evaluate the stress distribution around endodontic posts; those which compared posts composed of different materials are rare. The aim of this study was to compare stresses induced in dentin by three structurally different posts using photoelasticity method.
Materials And Methods: Nine blocks of PSM-5 Photoelastic material with 45×45×10 mm dimension were prepared.