Publications by authors named "Majid Namayandeh Jorabchi"

Pharmaceutical contaminants pose significant risks to ecosystems and human health, necessitating effective removal strategies. This research focuses on developing advanced adsorbents for removing pharmaceutical pollutants from the environment. Metal-organic frameworks (MOFs), specifically MIL-101(Cr) functionalized with biodegradable beta-cyclodextrin (β-CDex), were investigated as potential nanocomposite adsorbents for the removal of ketorolac (KTRK), naproxen (NPXN), and tramadol (TRML).

View Article and Find Full Text PDF

The development of stimuli-responsive nanomaterials holds immense promise for enhancing the efficiency and effectiveness of water treatment processes. These smart materials exhibit a remarkable ability to respond to specific external stimuli, such as light, pH, or magnetic fields, and trigger the controlled release of encapsulated pollutants. By precisely regulating the release kinetics, these nanomaterials can effectively target and eliminate contaminants without compromising the integrity of the water system.

View Article and Find Full Text PDF

The contamination of wastewater with antibiotics has emerged as a critical global challenge, with profound implications for environmental integrity and human well-being. Adsorption techniques have been meticulously investigated and developed to mitigate and alleviate their effects. In this study, we have investigated the adsorption behaviour of Erythromycin (ERY), Gentamicin (GEN), Levofloxacin (LEVO), and Metronidazole (MET) antibiotics as pharmaceutical contaminants (PHCs) on amide-functionalized (RC (=O)NH)/MIL-53 (Al) (AMD/ML53A), using molecular simulations and density functional theory (DFT) calculations.

View Article and Find Full Text PDF

This study focuses on the utilization of connectionist models, specifically Independent Component Analysis (ICA), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Genetic Algorithm-Particle Swarm Optimization (GAPSO) integrated with a least-squares support vector machine (LSSVM) to forecast the degradation of tetracycline (TC) through photocatalysis using Metal-Organic Frameworks (MOFs). The primary objective of this study was to evaluate the viability and precision of these connectionist models in estimating the efficiency of TC degradation, particularly within the context of wastewater treatment. The input parameters for these models cover essential MOF characteristics, such as pore size and surface area, along with critical operational factors, such as pH, TC concentration, catalyst dosage, and illumination duration, all of which are linked to the photocatalytic performance of MOFs.

View Article and Find Full Text PDF

In this study, the ability of the highly scalable metal-organic framework (MOF) CALF-20 to adsorb polar and non-polar gases at low pressure was investigated using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations. The results from the simulated adsorption isotherms revealed that the highest loading was achieved for SO and Cl, while the lowest loading was found for F molecules. The analysis of interaction energies indicated that SO molecules were able to form the strongest adsorbent-adsorbate interactions and had a tight molecular packing due to their polarity and angular structure.

View Article and Find Full Text PDF

Due to the high demand for clean, economic, and recyclable energy, phase change materials (PCMs) have received significant attention in recent years. To improve the performance of PCMs, they are confined in micro- and nano-capsules composed of organic or inorganic materials. In this study, encapsulated phase change material (EPCM) systems were constructed with paraffin molecules as the core material and capped carbon nanotubes (CNTs) as the shell.

View Article and Find Full Text PDF

The separation of CO from gas streams is a central process to close the carbon cycle. Established amine scrubbing methods often require hot water vapour to desorb the previously stored CO. In this work, the applicability of MFI membranes for HO/CO separation is principally demonstrated by means of realistic adsorption isotherms computed by configurational-biased Monte Carlo (CBMC) simulations, then parameters such as temperatures, pressures and compositions were identified at which inorganic membranes with high selectivity can separate hot water vapour and thus make it available for recycling.

View Article and Find Full Text PDF

Herein, two sunlight responsive photocatalysts including TiO nanoparticles (NPs) and TiO/graphene quantum dots (GQDs) nanocomposite for degrading a textile dye, Reactive Black 5 (RB5), were prepared. The results showed that 100% of 50 ppm RB5 could be degraded by TiO NPs and TiO/GQDs within 60 and 30 min sunlight irradiation, respectively. Hence, much better photocatalytic activity in degradation of RB5 was achieved by TiO/GQDs under sunlight irradiation compared with pure TiO NPs due to its lower band gap (2.

View Article and Find Full Text PDF

In this work, the temperature-dependent solvation behavior of a number of important light gases, such as carbon dioxide, xenon, krypton, argon, oxygen, methane, nitrogen, neon, and hydrogen, in two important imidazolium-based ionic liquids (ILs) of the type 1--alkyl-3-methylimidazolium hexafluorophosphate ([Cmim][PF]) and 1--alkyl-3-methylimidazolium tetrafluoroborate ([CmimBF]) with varying chain lengths ( = 2, 4, 6, and 8) are investigated using molecular dynamics simulations for a temperature range between 300 and 500 K at a pressure of 1 bar. The aim of this work is first to propose a reliable estimate for the temperature-dependent solubility behavior of (very) light gases, e.g.

View Article and Find Full Text PDF

In this study, we have investigated delivery of cisplatin as the anticancer drug molecules in different carbon nanotubes (CNTs) in the gas phase using molecular dynamics simulation. We examined the shape and composition of the releasing agent by using the different nanowires and nanoclusters. We also investigated the doping effect on the drug delivery process using N-, Si, B-, and Fe-doped CNTs.

View Article and Find Full Text PDF

We have determined the temperature dependence of the solvation behavior of a large collection of important light gases in imidazolium-based ionic liquids with the help of extensive molecular dynamics simulations. The motivation of our study is to unravel common features of the temperature dependent solvation under well controlled conditions, and to provide a guidance for cases, where experimental data from different sources disagree significantly. The solubility of molecular hydrogen, oxygen, nitrogen, methane, krypton, argon, neon and carbon dioxide in the imidazolium based ionic liquids of type 1-n-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Cmim][NTf]) with varying alkyl side chain lengths n = 2, 4, 6, 8 is computed for a temperature range between 300 K and 500 K at 1 bar.

View Article and Find Full Text PDF

For the first time, zinc oxide nanoparticles have been synthesized by the sonochemical method in an ionic liquid, 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, liquid [hmim][NTf(2)] as a solvent. The morphology and structure of ZnO nanoparticles have been characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A possible mechanism is proposed to explain the formation of ZnO nanostructures.

View Article and Find Full Text PDF