Background: Previous evidence indicates that tramadol (TRA) can lead to neurodegenerative events and minocycline (MIN) has neuroprotective properties.
Aim Of The Study: The current research evaluated the neuroprotective effects of MIN for TRA-promoted neurodegeneration.
Methods: Sixty adult male rats were placed into the following groups: 1 (received 0.
Background: Nicotine is a behavioral stimulant that in high doses, through the neuro-inflammatory and oxidative stress pathway, can induce apoptosis and autophagy leading to cell death. Previous data indicate that crocin has neuroprotective properties. The aim of the current study is to investigate crocin's neuroprotective effects against nicotine-triggered neuro-inflammation, apoptosis, and autophagy in rat hippocampus.
View Article and Find Full Text PDFBurns
November 2024
Diabetes is a chronic endocrine disorder that negatively affects various body systems, including the nervous system. Diabetes can cause or exacerbate various neurological disorders, and diabetes-induced neurodegeneration can involve several mechanisms such as mitochondrial dysfunction, activation of oxidative stress, neuronal inflammation, and cell death. In recent years, the management of diabetes-induced neurodegeneration has relied on several types of drugs, including sodium-glucose cotransporter-2 SGLT2) inhibitors, also called gliflozins.
View Article and Find Full Text PDFNicotine is a psychostimulant that induces neurochemical and behavioral changes upon chronic administration, leading to neurodegenerative conditions associated with smoking. As of now, no preventive or therapeutic strategies are known to counteract nicotine‑induced neurodegeneration. In this study, we explore the neuroprotective effects of crocin, a bioactive agent commonly found in saffron - a spice derived from the flower of Crocus sativus - using a rat model.
View Article and Find Full Text PDFBackground: Nanotechnology and its application to manipulate herbal compounds to design new neuroprotective agents to manage neurotoxicity has recently increased. Cur-ZnO conjugated nanoparticles were synthesized and used in an experimental model of ketamine-induced neurotoxicity.
Methods: Cur-ZnO conjugated nanoparticles were chemically characterized, and the average crystalline size was determined.
Background: Many previous studies demonstrated that methamphetamine (METH) abuses can cause mood-related behavioral changes. Previous studies indicated neuroprotective effects of Selegiline.
Methods: Seventy male Wistar rats were randomly divided into eight groups (10 rats in each group).
Background: Tramadol (TRA) is an analgesic prescribed for treating mild to moderate pains, the abuse of which has increased in recent years. Chronic tramadol consumption produces neurotoxicity, although the mechanisms are unclear. The present study investigated the involvement of apoptosis and autophagy signaling pathways and the mitochondrial system in TRA-induced neurotoxicity.
View Article and Find Full Text PDFDiabetes mellitus (DM) is a metabolic disease that activates several molecular pathways involved in neurodegenerative disorders. Metformin, an anti-hyperglycemic drug used for treating DM, has the potential to exert a significant neuroprotective role against the detrimental effects of DM. This review discusses recent clinical and laboratory studies investigating the neuroprotective properties of metformin against DM-induced neurodegeneration and the roles of various molecular pathways, including mitochondrial dysfunction, oxidative stress, inflammation, apoptosis, and its related cascades.
View Article and Find Full Text PDFActa Neurobiol Exp (Wars)
April 2023
The potential of minocycline to protect against methylphenidate‑induced neurodegeneration has been extensively reported in the literature but the mechanism of action is still unknown. This study aims to determine the role of mitochondrial chain enzymes and redox homeostasis on the neuroprotective effects of minocycline in methylphenidate‑induced neurodegeneration. Wistar adult male rats were randomly assigned to the seven experimental groups: Group 1 received saline solution; Group 2 received methylphenidate (10 mg/kg, i.
View Article and Find Full Text PDFTramadol (TRA) causes neurotoxicity whereas trimetazidine (TMZ) is neuroprotective. The potential involvement of the PI3K/Akt/mTOR signaling pathway in the neuroprotection of TMZ against TRA-induced neurotoxicity was evaluated. Seventy male Wistar rats were divided into groups.
View Article and Find Full Text PDFThe current pandemic coronavirus disease-19 (COVID-19) is still a global medical and economic emergency with over 244 million confirmed infections and over 4.95 million deaths by October 2021, in less than 2 years. Severe acute respiratory syndrome (SARS), the Middle East respiratory syndrome coronavirus (MERS), and COVID-19 are three recent coronavirus pandemics with major medical and economic implications.
View Article and Find Full Text PDFTanaffos
February 2023
titania (titanium dioxide, TiO) is known to induce neurotoxicity and CNS dysfunctions. Numerous studies have explored the neuroprotective effects of melatonin against neurotoxicity. This study evaluates the potential of melatonin to protect against titania-induced neurotoxicity and the role of the Keap1/Nrf2/ARE signaling pathway.
View Article and Find Full Text PDFNeurodegeneration is a pathological process characterized by progressive neuronal impairment, dysfunction, and loss due to mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Many studies have shown that lithium protects against neurodegeneration. Herein, we summarize recent clinical and laboratory studies on the neuroprotective effects of lithium against neurodegeneration and its potential to modulate mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis.
View Article and Find Full Text PDFBiologia (Bratisl)
August 2022
Severe Acute Respiratory Syndrome Coronavirus-2 (COVID-19) is a respiratory disease that causes dysfunction in respiration. Since late 2019, this virus has infected and killed millions of people around the world and imposed many medical and therapeutic problems in the form of a pandemic. According to recent data, COVID-19 disease can increase the risk of stroke, which can be deadly or cause many neurological disorders after the disease.
View Article and Find Full Text PDFBackground: As a psychostimulant agent, methylphenidate (MPH) abuse can cause serious liver damage. Studies have documented the hepatoprotective impacts of curcumin on liver damage. According to this definition, the purpose of this study is to explain the hapatoprotective effects of curcumin against the hepatotoxicity induced by MPH.
View Article and Find Full Text PDFNeurodegeneration is a side effect of methylphenidate (MPH), and minocycline possesses neuroprotective properties. This study aimed to investigate the neuroprotective effects of minocycline against methylphenidate-induced neurodegeneration mediated by signaling pathways of CREB/BDNF and Akt/GSK3. Seven groups of seventy male rats were randomly distributed in seven groups (n = 10).
View Article and Find Full Text PDFIntroduction: The neuroprotective impact of curcumin and the role of CREB (Cyclic AMP Response Element Binding protein)-BDNF (Brain-Derived Neurotrophic Factor) signaling pathway was evaluated in Methamphetamine (METH)-induced neurodegeneration in rats.
Methods: Sixty adult male rats were randomly divided into 6 groups. While normal saline and 10 mg/kg METH were administered intraperitoneally in groups 1 and 2, groups 3, 4, 5, and 6 received METH (10 mg/kg) and curcumin (10, 20, 40, and 80 mg/kg, respectively) simultaneously.
Introduction: Memory is defined as the ability to store, maintain and retrieve information. Learning is the acquisition of information that changes behavior and memory. Stress, dementia, head trauma, amnesia, Alzheimer's, Huntington, Parkinson's, Wernicke-Korsakoff syndrome (WKS) may be mentioned among the diseases in which memory and learning are affected.
View Article and Find Full Text PDFPrevious studies have shown that alcohol abuse can cause serious liver damage and cirrhosis. The main pathway for these types of hepatocellular cell neurodegeneration is mitochondrial dysfunction, which causes lipid peroxidation and dysfunction of the glutathione ring and the defect of antioxidant enzymes in alcoholic hepatic cells. Alcohol can also initiate malicious inflammatory pathways and trigger the initiation and activation of intestinal and extrinsic apoptosis pathways in hepatocellular tissues that lead to cirrhosis.
View Article and Find Full Text PDF