Publications by authors named "Majid Iranpour Mobarakeh"

Nanoparticles impose multidimensional effects on living cells that significantly vary among different studies. Machine learning (ML) methods are recommended to elucidate more consistence and predictable relations among the affected parameters. In this study, nine ML algorithms [Support-Vector Regression (SVR), Linear, Bagging, Stochastic Gradient Descent (SGD), Gaussian Process, Random Sample Consensus (RANSAC), Partial Least Squares (PLS), Kernel Ridge, and Random Forest] were applied to evaluate their efficiency in predicting the effects of zinc oxide nanoparticles (ZnO NPs: 0.

View Article and Find Full Text PDF

Background: Dynamic protein-protein interaction networks (DPPIN) can confirm the conditional and temporal features of proteins and protein complexes. In addition, the relation of protein complexes in dynamic networks can provide useful information in understanding the dynamic functionality of PPI networks.

Objective: In this paper, an algorithm is presented to discover the temporal association rule from the dynamic PPIN dataset.

View Article and Find Full Text PDF

Background: Wet-lab experiments for identification of interactions between drugs and target proteins are time-consuming, costly and labor-intensive. The use of computational prediction of drug-target interactions (DTIs), which is one of the significant points in drug discovery, has been considered by many researchers in recent years. It also reduces the search space of interactions by proposing potential interaction candidates.

View Article and Find Full Text PDF