Biomineralization had apparently evolved independently in different phyla, using distinct minerals, organic scaffolds, and gene regulatory networks (GRNs). However, diverse eukaryotes from unicellular organisms, through echinoderms to vertebrates, use the actomyosin network during biomineralization. Specifically, the actomyosin remodeling protein, Rho-associated coiled-coil kinase (ROCK) regulates cell differentiation and gene expression in vertebrates' biomineralizing cells, yet, little is known on ROCK's role in invertebrates' biomineralization.
View Article and Find Full Text PDFBiomineralization is the process in which soft organic tissues use minerals to produce shells, skeletons and teeth for various functions such as protection and physical support. The ability of the cells to control the time and place of crystal nucleation as well as crystal orientation and stiffness is far beyond the state-of-the art of human technologies. Thus, understanding the biological control of biomineralization will promote our understanding of embryo development as well as provide novel approaches for material engineering.
View Article and Find Full Text PDFDeoxygenation, the reduction of oxygen level in the oceans induced by global warming and anthropogenic disturbances, is a major threat to marine life. This change in oxygen level could be especially harmful to marine embryos that use endogenous hypoxia and redox gradients as morphogens during normal development. Here, we show that the tolerance to hypoxic conditions changes between different developmental stages of the sea urchin embryo, possibly due to the structure of the gene regulatory networks (GRNs).
View Article and Find Full Text PDFEmbryonic development evolves by balancing stringent morphological constraints with genetic and environmental variation. The design principle that allows developmental transcriptional programs to conserve embryonic morphology while adapting to environmental changes is still not fully understood. To address this fundamental challenge, we compare developmental transcriptomes of two sea urchin species, Paracentrotus lividus and Strongylocentrotus purpuratus, that shared a common ancestor about 40 million years ago and are geographically distant yet show similar morphology.
View Article and Find Full Text PDF