Conocarpus fiber is an abundantly available and sustainable cellulosic biomass. With its richness in cellulose content, it is potentially used for manufacturing microcrystalline cellulose (MCC), a cellulose derivative product with versatile industrial applications. In this work, different samples of bleached fiber (CPBLH), alkali-treated fiber (CPAKL), and acid-treated fiber (CPMCC) were produced from Conocarpus through integrated chemical process of bleaching, alkaline cooking, and acid hydrolysis, respectively.
View Article and Find Full Text PDFTree species (including Eucalyptus camaldulensis, Ziziphus spina-christi, Albizia lebbeck, Prosopis juliflora, Pithecellobium dulce, and Ficus altissima) were investigated to elucidate their appropriates for green belt application. Leaf samples were collected from four different locations in Riyadh: (1) residential; (2) dense traffic; (3) industrial; and (4) reference sites located approximately 20 km away from the city of Riyadh. Leaves collected from the industrial site showed the highest leaf area reduction.
View Article and Find Full Text PDFUrban street dust was collected from 22 locations in Riyadh, Saudi Arabia, and nine metals (Pb, Cr, Zn, Co, Cu, Al, Fe, Mn, and Ni) were investigated. The concentrations of these metals were employed in several common contamination evaluation indices to examine the contamination and the health risk caused by metals. Evaluation of these indices showed that they had variable degrees of contamination sensitivity.
View Article and Find Full Text PDFThe present study deals with the fabrication of epoxy composites reinforced with 50 wt% of date palm leaf sheath (G), palm tree trunk (L), fruit bunch stalk (AA), and leaf stalk (A) as filler by the hand lay-up technique. The developed composites were characterized and compared in terms of mechanical, physical and morphological properties. Mechanical tests revealed that the addition of AA improves tensile (20.
View Article and Find Full Text PDFThe current study is motivated by the strict environmental regulations regarding the utilization and consumption of ecofriendly materials. In this context, the aim of this study has been to prepare and characterize different date palm tree (Phoenix dactylifera L.) fibers processed through the conventional water retting method.
View Article and Find Full Text PDF