Publications by authors named "Majed Algonaiah"

Bromodomain and extra-terminal domain proteins (BET proteins) are epigenetic reader proteins that have been implicated in regulating gene expression through binding to chromatin and interaction with transcription factors. These proteins are located in the nucleus and are responsible for recognizing acetylated lysine residues on histones, reading epigenetic messages, recruiting key transcription factors, and thereby regulating gene expression. BET proteins control the transcription of genes responsible for maladaptive effects in inflammation, cancer, and renal and cardiovascular diseases.

View Article and Find Full Text PDF

The pathophysiology of autism is influenced by a combination of environmental and genetic factors. Furthermore, individuals with autism appear to be at a higher risk of developing cancer. However, this is not fully understood.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system characterized by motor deficits, cognitive impairment, fatigue, pain, and sensory and visual dysfunction. CD40, highly expressed in B cells, plays a significant role in MS pathogenesis. The experimental autoimmune encephalomyelitis (EAE) mouse model of MS has been well established, as well as its relevance in MS patients.

View Article and Find Full Text PDF

The oxidation of xanthine by xanthine oxidase (XO) or xanthine dehydrogenase represents an important source of reactive oxygen species (ROS), which contribute to the damaging consequences of cerebral ischemia, inflammation, and neurodegenerative disorders. However, both enzymes are also able to act on reduced nicotinamide adenine dinucleotide (NADH). The FAD binding site to which NADH binds is distinct from that of the xanthine binding site.

View Article and Find Full Text PDF

This investigation was performed to evaluate the effects of nimesulide (NIM), a selective cyclo-oxygenase-2 (COX-2) inhibitor, on forebrain ischemia-induced in vivo oxidative stress damage in the rat hippocampus. Hippocampal tissue glutathione (GSH) and malondialdehyde (MDA) contents, the activities of the antioxidants superoxide dismutase (SOD) and catalase as well as nitric oxide (NO) concentration were estimated. A clinically relevant dose of NIM (18 mg x kg(-1) x d(-1), p.

View Article and Find Full Text PDF