Publications by authors named "Majd Agbaria"

Despite tremendous global efforts since the beginning of the COVID-19 pandemic, still only a limited number of prophylactic and therapeutic options are available. Although vaccination is the most effective measure in preventing morbidity and mortality, there is a need for safe and effective post-infection treatment medication. In this study, we explored a pipeline of 21 potential candidates, examined in the Calu-3 cell line for their antiviral efficacy, for drug repurposing.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of cancer-related death, and it is highly resistant to therapy owing to its unique extracellular matrix. VAV1 protein, overexpressed in several cancer diseases including pancreatic cancer (PC), increases tumor proliferation and enhances metastases formation, which are associated with decreased survival. We hypothesized that an additive anti-tumor effect could be obtained by co-encapsulating in PLGA nanoparticles (NPs), the negatively charged siRNA against VAV1 (siVAV1) with the positively charged anti-tumor LL37 peptide, as a counter-ion.

View Article and Find Full Text PDF

Over-activation of the endocannabinoid/CBR system is a hallmark feature of obesity and its related comorbidities, most notably type 2 diabetes (T2D), and non-alcoholic fatty liver disease (NAFLD). Although the use of drugs that widely block the CBR was found to be highly effective in treating all metabolic abnormalities associated with obesity, they are no longer considered a valid therapeutic option due to their adverse neuropsychiatric side effects. Here, we describe a novel nanotechnology-based drug delivery system for repurposing the abandoned first-in-class global CBR antagonist, rimonabant, by encapsulating it in polymeric nanoparticles (NPs) for effective hepatic targeting of CBRs, enabling effective treatment of NAFLD and T2D.

View Article and Find Full Text PDF
Article Synopsis
  • Hepatitis B virus affects a significant portion of the global population, with 296 million individuals experiencing chronic infection that can lead to severe liver diseases without a reliable cure.
  • Researchers have found that rhesus macaques can clear acute HBV infections like humans but may develop long-term infections under immunosuppression.
  • The study identifies key indicators of HBV infection in the macaques, making this model valuable for testing and developing new treatments for Hepatitis B.
View Article and Find Full Text PDF

Herpes simplex virus-1 (HSV-1) is highly contagious, and there is a need for a therapeutic means to eradicate it. We have identified an siRNA (siHSV) that knocks down gene expression of the infected cell protein 0 (ICP0), which is important in the regulation of HSV infection. The selected siHSV was encapsulated in liposomes to overcome its poor stability, increase cell permeability, and prolonging siRNA circulation time.

View Article and Find Full Text PDF

Quantum dots offer superior optical features and hold a great potential as an imaging tool in comparison to 'conventional' fluorescent dyes. However, in vivo application in inflammatory-associated disorders is limited due to potential toxicity following systemic administration. Vascular inflammation contributes to cardiovascular diseases such as restenosis (re-narrowing of the artery following angioplasty), and poor prognosis is associated with the increased number of monocytes-derived macrophages (MDMs) in the arterial wall.

View Article and Find Full Text PDF

The majority of developed and approved anticancer nanomedicines have been designed to exploit the dogma of the enhanced permeability and retention (EPR) effect, which is based on the leakiness of the tumor's blood vessels accompanied by impeded lymphatic drainage. However, the EPR effect has been under scrutiny recently because of its variable manifestation across tumor types and animal species and its poor translation to human cancer therapy. To facilitate the EPR effect, systemically injected NPs should overcome the obstacle of rapid recognition and elimination by the mononuclear phagocyte system (MPS).

View Article and Find Full Text PDF

Quantum dots (QDs), semiconductor nanocrystals, are fluorescent nanoparticles of growing interest as an imaging tool of a diseased tissue. However, a major concern is their biocompatibility, cytotoxicity, and fluorescence instability in biological milieu, impeding their use in biomedical applications, in general, and for inflammation imaging, in particular. In addition, for an efficient fluorescent signal at the desired tissue, and avoiding systemic biodistribution and possible toxicity, targeting is desired.

View Article and Find Full Text PDF