Publications by authors named "Majd A Hamaly"

Cellular quiescence is a state of growth arrest or slowed proliferation that is described in normal and cancer stem cells (CSCs). Quiescence may protect CSCs from antiproliferative chemotherapy drugs. In T-cell acute lymphoblastic leukemia (T-ALL) patient-derived xenograft (PDX) mouse models, quiescent cells are associated with treatment resistance and stemness.

View Article and Find Full Text PDF

The Wnt/β-catenin pathway's significance in cancer initiation, progression, and stem cell biology underscores its therapeutic potential. However, the clinical application of Wnt inhibitors remains limited due to challenges posed by off-target effects and complex cross-talk of Wnt signaling with other pathways. In this study, we leveraged a zebrafish model to perform a robust and rapid drug screening of 773 FDA-approved compounds to identify Wnt/β-catenin inhibitors with minimal toxicity.

View Article and Find Full Text PDF

Unlabelled: The Wnt/β-catenin pathway's significance in cancer initiation, progression, and stem cell biology underscores its therapeutic potential, yet clinical application of Wnt inhibitors remains limited due to challenges posed by off-target effects and complex crosstalk with other pathways. In this study, we leveraged the zebrafish model to perform a robust and rapid drug screening of 773 FDA-approved compounds to identify Wnt/β-catenin inhibitors with minimal toxicity. Utilizing zebrafish expressing a Wnt reporter, we identified several drugs that suppressed Wnt signaling without compromising zebrafish development.

View Article and Find Full Text PDF

The increasing number of available anti-cancer drugs presents a challenge for oncologists, who must choose the most effective treatment for the patient. Precision cancer medicine relies on matching a drug with a tumor's molecular profile to optimize the therapeutic benefit. However, current precision medicine approaches do not fully account for intra-tumoral heterogeneity.

View Article and Find Full Text PDF

Maintaining colloidal stability of nanoparticles in suspensions is a major challenge. Therefore, freeze-drying (lyophilization) is recently proposed to preserve colloidal stability of nanoparticles through maintaining them in a solid state. However, freeze-drying would itself induce nanoparticle aggregation unless proper formulation with a careful selection of cryoprotectants is considered.

View Article and Find Full Text PDF

Nanoscale materials are increasingly found in consumer goods, electronics, and pharmaceuticals. While these particles interact with the body in myriad ways, their beneficial and/or deleterious effects ultimately arise from interactions at the cellular and subcellular level. Nanoparticles (NPs) can modulate cell fate, induce or prevent mutations, initiate cell-cell communication, and modulate cell structure in a manner dictated largely by phenomena at the nano-bio interface.

View Article and Find Full Text PDF

Many synthetic approaches for gold nanoparticles rely on an aqueous media, resulting in water-soluble nanoparticles, which limits the ability to incorporate gold nanoparticles into other organic solvents or hydrophobic polymeric composites. Surface functionalization and phase transfer approaches using alkylthiols or alkylamines, which strongly bind the gold surface, are common routes to overcome this limitation, however they are typically challenging methods. In this paper we report an approach to transport citrate capped gold nanoparticles into a variety of solvents, including ones that are hydrophobic and not miscible with water without the need for phase transfer agents.

View Article and Find Full Text PDF

For various applications of gold nanotechnology, long-term nanoparticle stability in solution is a major challenge. Lyophilization (freeze-drying) is a widely used process to convert labile protein and various colloidal systems into powder for improved long-term stability. However, the lyophilization process itself may induce various stresses resulting in nanoparticle aggregation.

View Article and Find Full Text PDF