Background: Several in silico studies have determined that quercetin, a plant flavonol, could bind with strong affinity and low free energy to SARS-CoV-2 proteins involved in viral entry and replication, suggesting it could block infection of human cells by the virus. In the present study, we examined the ex vivo ability of quercetin to inhibit of SARS-CoV-2 replication and explored the mechanisms of this inhibition.
Methods: Green monkey kidney Vero E6 cells and in human colon carcinoma Caco-2 cells were infected with SARS-CoV-2 and incubated in presence of quercetin; the amount of replicated viral RNA was measured in spent media by RT-qPCR.
Isoquercetin and quercetin are secondary metabolites found in a variety of plants, including edible ones. Isoquercetin is a monoglycosylated derivative of quercetin. When ingested, isoquercetin accumulates more than quercetin in the intestinal mucosa where it is converted to quercetin; the latter is absorbed into enterocytes, transported to the liver, released in circulation, and distributed to tissues, mostly as metabolic conjugates.
View Article and Find Full Text PDFProprotein Convertase Subtilisin/Kexin-type 9 (PCSK9) is a circulating negative regulator of hepatic low-density lipoprotein receptor (LDLR), which clears cholesterol from blood. Gain-of-function genetic mutations that amplify PCSK9 activity have been found to cause potentially lethal familial hypercholesterolemia. Inversely, reduction of its activity through loss-of-function genetics or with pharmaceuticals was shown to increase hepatic LDLR, to lower blood cholesterol, and to protect against cardiovascular diseases.
View Article and Find Full Text PDFIndividuals harboring the loss-of-function (LOF) proprotein convertase subtilisin/kexin type 9 Gln152His variation (PCSK9Q152H) have low circulating low-density lipoprotein cholesterol levels and are therefore protected against cardiovascular disease (CVD). This uncleavable form of proPCSK9, however, is retained in the endoplasmic reticulum (ER) of liver hepatocytes, where it would be expected to contribute to ER storage disease (ERSD), a heritable condition known to cause systemic ER stress and liver injury. Here, we examined liver function in members of several French-Canadian families known to carry the PCSK9Q152H variation.
View Article and Find Full Text PDFCan J Infect Dis Med Microbiol
September 2020
Recent evidence suggests that proprotein convertase subtilisin/kexin type 9 (PCSK9), a downmodulator of cellular uptake of blood cholesterol, also negatively impacts host immune response to microbial infection. In this study, we investigated whether carrying the loss-of-function (LOF) rs562556 (c.1420 A > G; p.
View Article and Find Full Text PDFSoluble low-density lipoprotein receptor (sLDLR) is the circulating ectodomain of transmembrane LDLR. Its blood level strongly correlates with that of triglycerides (TG). This correlation has eluded satisfactory explanation.
View Article and Find Full Text PDFContext: Elevated circulating cholesterol-rich low-density lipoprotein (LDL) particles increase coronary artery disease risk. Cell-surface hepatic LDL receptors (LDLRs) clear 70% of these particles from circulation. The ectodomain of LDLR is shed into circulation, preventing it from removing LDL particles.
View Article and Find Full Text PDFAim: Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) is a hepatic secretory protein which promotes the degradation of low-density lipoprotein receptors leading to reduced hepatic uptake of plasma cholesterol. Non-synonymous single-nucleotide polymorphisms in its gene have been linked to hypo- or hyper- cholesterolemia, depending on whether they decrease or increase PCSK9 activity, respectively. Since the proliferation and the infectivity of Plasmodium spp.
View Article and Find Full Text PDFScope: Hepatic LDL receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) regulate the clearance of plasma LDL-cholesterol (LDL-C): LDLR promotes it, and PCSK9 opposes it. These proteins also express in pancreatic β cells. Using cultured hepatocytes, we previously showed that the plant flavonoid quercetin-3-glucoside (Q3G) inhibits PCSK9 secretion, stimulated LDLR expression, and enhanced LDL-C uptake.
View Article and Find Full Text PDFPurpose Of Review: The nine members of the proprotein convertase family play major physiological roles during development and in the adult, and their dysregulation leads to various diseases. The primary objective of this article is to review recent findings on the clinical importance of some of these convertases concentrating mostly on PCSK9, the ninth member of the convertase family. This includes the transcriptional and translational regulation of PCSK9, its ability to enhance the degradation of LDL receptor (LDLR), and the implication of PCSK9 in inflammation and sepsis.
View Article and Find Full Text PDFQ3G is a natural derivative of quercetin and is already widely used in various foods and drinks. Our results clearly demonstrated that Q3G exerts antiviral activity against ZIKV in both tissue culture and knockout mice, and that post-exposure in vivo treatment with Q3G could have a beneficial effect. In the future, Q3G should be tested in human cell lines (such as Huh-7, HeLa, or K048, a fetal brain neural stem cell line) to provide further data supporting its potential efficacy in humans; in addition, live viral loads or viremia should be tested in treated animals to supplement the survival results observed in this study.
View Article and Find Full Text PDFContext: Proprotein convertase subtilisin kexin 9 (PCSK9) mediates degradation of the low-density lipoprotein receptor (LDLR), thereby increasing plasma low-density lipoprotein cholesterol (LDL-C). Variations in the PCSK9 gene associated with loss of function (LOF) of PCSK9 result in greater expression of hepatic LDLR, lower concentrations of LDL-C, and protection from cardiovascular disease (CVD). Apolipoprotein-B (apoB) remnants also contribute to CVD risk and are similarly cleared by the LDLR.
View Article and Find Full Text PDFObjective: Low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) are opposing regulators of plasma LDL-cholesterol levels. The PCSK9 gene exhibits many single or compound polymorphisms within or among mammalian species. This is case between the SPRET/EiJ (SPRET) and C57BL/6J (B6) mouse strains.
View Article and Find Full Text PDFAntimicrob Agents Chemother
September 2016
Ebola outbreaks occur on a frequent basis, with the 2014-2015 outbreak in West Africa being the largest one ever recorded. This outbreak has resulted in over 11,000 deaths in four African countries and has received international attention and intervention. Although there are currently no approved therapies or vaccines, many promising candidates are undergoing clinical trials, and several have had success in promoting recovery from Ebola.
View Article and Find Full Text PDFPro-opiomelanocortin (POMC), is a polyprotein expressed in the pituitary and the brain where it is proteolytically processed into peptide hormones and neuropeptides with distinct biological activities. It is the prototype of multipotent prohormones. The prohormone theory was first suggested in 1967 when Chrétien and Li discovered γ-lipotropin and observed that (i) it was part of β-lipotropin (β-LPH), a larger polypeptide characterized 2 years earlier and (ii) its C-terminus was β-melanocyte-stimulating hormone (β-MSH).
View Article and Find Full Text PDFLow-density lipoprotein receptor (LDLR) mediates hepatic clearance of plasma cholesterol; proprotein convertase subtilisin/kexin 9 (PCSK9) opposes this clearance by promoting LDLR degradation. The plant flavonoid quercetin-3-β-d-glucoside (Q3G) has been shown to reduce hypercholesterolemia in experimental animals. Here, we examined how it affects LDLR and PCSK9 expression as well as LDL uptake by human Huh7 hepatocytes.
View Article and Find Full Text PDFSince the discovery of proprotein convertase subtilisin kexin 9 (PCSK9) in 2003, this PC has attracted a lot of attention from the scientific community and pharmaceutical companies. Secreted into the plasma by the liver, the proteinase K-like serine protease PCSK9 binds the low-density lipoprotein (LDL) receptor at the surface of hepatocytes, thereby preventing its recycling and enhancing its degradation in endosomes/lysosomes, resulting in reduced LDL-cholesterol clearance. Surprisingly, in a nonenzymatic fashion, PCSK9 enhances the intracellular degradation of all its target proteins.
View Article and Find Full Text PDFBackground: Proprotein convertase subtilisin/kexin-type 9 (PCSK9) downregulates clearance of plasma cholesterol by liver. Its inactivation increases this clearance, reducing cardiovascular risk. However, a lack of PCSK9 could also lead to cholesterol accumulation in pancreatic islet beta cells, impairing insulin secretion.
View Article and Find Full Text PDFThe secretory proprotein convertase (PC) family comprises nine members: PC1/3, PC2, furin, PC4, PC5/6, PACE4, PC7, SKI-1/S1P, and PCSK9. The first seven PCs cleave their substrates at single or paired basic residues, and SKI-1/S1P cleaves its substrates at non-basic residues in the Golgi. PCSK9 cleaves itself once, and the secreted inactive protease escorts specific receptors for lysosomal degradation.
View Article and Find Full Text PDFProprotein Convertases Subtilisin/Kexin Type 9 (PCSK9) is a serine endoproteinase. Biosynthesized as a zymogen, it cleaves itself once, and then turns into an escort protein for transmembrane proteins, leading them into lysosomes for degradation. It is primarily produced and secreted by the liver.
View Article and Find Full Text PDFObjectives: Variants of the secreted glycoprotein, proprotein convertase subtilisin/kexin 9 (PCSK9), associate with both hypo- and hyper-cholesterolemic phenotypes. Herein, we carried out full exonic sequencing of PCSK9 documenting the frequency of single and multiple PCSK9 variations and their effects on serum lipoprotein and PCSK9 levels in Caucasian Canadians.
Methods: The 12 exons of PCSK9 were sequenced in 207 unrelated Caucasian Canadians.
Front Pharmacol
October 2012
Moringa oleifera (M. oleifera) is an angiosperm plant, native of the Indian subcontinent, where its various parts have been utilized throughout history as food and medicine. It is now cultivated in all tropical and sub-tropical regions of the world.
View Article and Find Full Text PDFThe PCSK1 (proprotein convertase subtilisin/kexin type 1) locus encodes proprotein convertase 1/3, an endoprotease that converts prohormones and proneuropeptides to their active forms. Spontaneous loss-of-function mutations in the coding sequence of its gene have been linked to obesity in humans. Minor alleles of two common non-synonymous single-nucleotide polymorphisms (SNPs), rs6232 (T > C, N221D) and rs6235 (C > G, S690T), have been associated with increased risk of obesity in European populations.
View Article and Find Full Text PDFBackground: Proprotein convertase 1/3 (PC1/3) is one of the endoproteases initiating the proteolytic activation of prohormones and proneuropeptides in the secretory pathway. It is produced as a zymogen that is subsequently modified by activity-determining cleavages at the amino and the carboxyl termini. In human, it is encoded by the PCSK1 locus on chromosome 5.
View Article and Find Full Text PDF