The battery's performance heavily influences the safety, dependability, and operational efficiency of electric vehicles (EVs). This paper introduces an innovative hybrid deep learning architecture that dramatically enhances the estimation of the state of charge (SoC) of lithium-ion (Li-ion) batteries, crucial for efficient EV operation. Our model uniquely integrates a convolutional neural network (CNN) with bidirectional long short-term memory (Bi-LSTM), optimized through evolutionary intelligence, enabling an advanced level of precision in SoC estimation.
View Article and Find Full Text PDFFatigue cracks are a major defect in metal alloys, and specifically, their study poses defect evaluation challenges in aluminum aircraft alloys. Existing inline inspection tools exhibit measurement uncertainties. The physical-based methods for crack growth prediction utilize stress analysis models and the crack growth model governed by Paris' law.
View Article and Find Full Text PDF