Background And Objective: Laser phototherapy could be potentially used for cancer treatment, but the mechanisms of laser-induced cell death are not completely understood. Autophagy is the process in which the damaged cellular proteins and organelles are engulfed by and destroyed in acidified multiple-membrane vesicles. The aim of the present study was to investigate the role of autophagy in laser-induced tumor cell death in vitro.
View Article and Find Full Text PDFBiomaterials
December 2009
In the present study, we compared the effects of nanocrystalline fullerene suspension (nanoC(60)) on tumour cell growth in vitro and in vivo. NanoC(60) suspension was prepared by solvent exchange using tetrahydrofuran to dissolve C(60). In vitro, nanoC(60) caused oxidative stress, mitochondrial depolarization and caspase activation, leading to apoptotic and necrotic death in mouse B16 melanoma cells.
View Article and Find Full Text PDFThe influence of fullerene (C(60)) nanoparticles on the cytotoxicity of a highly reactive free radical nitric oxide (NO) was investigated. Fullerene nanoparticles were prepared by mechanochemically assisted complexation with anionic surfactant sodium dodecyl sulfate, macrocyclic oligosaccharide gamma-cyclodextrin or the copolymer ethylene vinyl acetate-ethylene vinyl versatate. C(60) nanoparticles were characterized by UV-vis and atomic force microscopy.
View Article and Find Full Text PDF