Publications by authors named "Maja M Bjelic"

Although age-related hypofunction of Leydig cells is well illustrated across species, its circadian nature has not been analyzed. Here we describe changes in circadian behavior in Leydig cells isolated from adult (3-month) and aged (18- and 24-month) rats. The results showed reduced circadian pattern of testosterone secretion in both groups of aged rats despite unchanged LH circadian secretion.

View Article and Find Full Text PDF

Melatonin actions on oscillators in reproductive organs are poorly understood. Here we analyzed melatonin effects on rhythmic expression of clock and steroidogenesis-related genes in adult rat Leydig cells (LCs). The effect of melatonin was tested both in vivo using pinealectomized and melatonin-substituted rats and in vitro on isolated LCs.

View Article and Find Full Text PDF

The aim of the present study was to define the role of testicular α1-adrenergic receptors (α1-ADRs) in stress-triggered adaptation of testosterone-producing Leydig cells of adult rats. Results showed that in vivo blockade of testicular α1-ADRs prevented partial recovery of circulating androgen levels registered after 10× repeated immobilization stress (10 × IMO). Moreover, α1-ADR-blockade diminished 10 × IMO-triggered recovery of Leydig cell androgen production, and abolished mitochondrial membrane potential recovery.

View Article and Find Full Text PDF

This study was designed to systematically analyze and define the effects of 1-day, 2-weeks, 10-weeks intramuscular administration of testosterone-enanthate, widely used and abused anabolic androgenic steroid (AAS), on main regulators of steroidogenesis and steroidogenic genes expression in testosterone-producing Leydig cells of adult rats. The results showed that prolonged (10-weeks) intramuscular administration of testosterone-enanthate, in clinically relevant dose, significantly increased prolactin, but decreased Prlr2 and Gnrhr in pituitary of adult rat. The levels of testosterone, Insl3, cAMP and mitochondrial membrane potential of Leydig cells were significantly reduced.

View Article and Find Full Text PDF

This study systematically evaluates the effects of androgen receptor (AR) blockade on molecular events in Leydig cells. Results showed that intramuscular administration of testosterone-enanthate, at clinically relevant dose, decreased testosterone in interstitial fluid and Leydig cells from adult rats. AR-blocker (Androcur) prevented this effect and testosterone-reduced Leydig cells steroidogenic capacity/activity.

View Article and Find Full Text PDF

The molecular mechanism of stress-associated reproductive dysfunction is complex and largely unknown. This study was designed to systematically analyze molecular effects of systemic in vivo blockade of α1-adrenergic receptors (α1-ADRs) on stress-induced disturbance of cAMP/cGMP signaling in testosterone-producing Leydig cells using the following parameters (i) level of circulating stress hormones, LH and testosterone; (ii) level of main molecular markers of Leydig cell functionality (testosterone, Insl3, cAMP); (iii) expression of cAMP signaling (cAMP 'producers'/'effectors'/'removers') and (iv) expression of NO-cGMP signaling (NO-cGMP 'producers'/'effectors'/'removers'). The results showed that oral administration of α1-ADR blocker before stress increased cGMP and diminished stress-reduced cAMP production in Leydig cells.

View Article and Find Full Text PDF

The molecular mechanism of the aging-associated dysfunction of Leydig cells (LCs) is complex and poorly understood. In this study, we analyzed the contribution of nitric oxide (NO) and cGMP signaling to the age-dependent decline in LC function. Significant (>50%) decreases in serum, intratesticular, and LC androgens in aging rats (15-24 months) were accompanied by a proportional increase in NO production, an up-regulation of cGMP levels, and the expression of soluble guanylyl cyclase-1B and protein kinase G1 in LCs.

View Article and Find Full Text PDF

This study was designed to systematically analyze and evaluate the effects of in vivo blockade of α₁-adrenergic receptors (α₁-ADRs) on the stress-induced disturbance of steroidogenic machinery in Leydig cells. Parameters followed 1) steroidogenic enzymes/proteins, transcription factors, and cAMP/testosterone production; 2) the main hallmarks of stress (epinephrine, glucocorticoids); and 3) transcription profiles of ADRs and oxidases with high affinity to inactivate glucocorticoids. Results showed that sustained blockade of α₁-ADRs prevented stress-induced 1) decrease of the transcripts/proteins for main steroidogenic CYPs (CYP11A1, CYP17A1); 2) decrease of Scarb1 and Hsd3b1 transcripts; 3) decrease of transcript for Nur77, one of the main activator of the steroidogenic expression; and 4) increase of Dax1 and Arr19, the main steroidogenic repressors in Leydig cells.

View Article and Find Full Text PDF

The stress-induced initiation of proapoptotic signaling in Leydig cells is relatively well defined, but the duration of this signaling and the mechanism(s) involved in opposing the stress responses have not been addressed. In this study, immobilization stress (IMO) was applied for 2 h daily, and animals were euthanized immediately after the first (IMO1), second (IMO2), and 10th (IMO10) sessions. In IMO1 and IMO2 rats, serum corticosterone and adrenaline were elevated, whereas serum androgens and mRNA transcription of insulin-like factor-3 in Leydig cells were inhibited.

View Article and Find Full Text PDF

Introduction: Phosphodiesterase type 5 (PDE5) inhibitors have been established in therapy for a variety of physiological disorders including erectile dysfunction. Despite its popularity and wide usage in erectile dysfunction treatment, the short-term effect of PDE5 inhibition on Leydig cell functionality and testosterone dynamics is missing.

Aim: This study was designed to assess the acute in vivo effects of sildenafil citrate (Viagra) treatment on testosterone production.

View Article and Find Full Text PDF

This study was designed to evaluate the effect of acute (2 h daily) and repeated (2 h daily for 2 or 10 consecutive days) immobilization stress (IMO) on: 1) the steroidogenic machinery homeostasis; 2) cAMP signaling; and the expression of receptors for main markers of 3) adrenergic and 4) glucocorticoid signaling in Leydig cells of adult rats. The results showed that acute IMO inhibited steroidogenic machinery in Leydig cells by downregulation of Scarb1 (scavenger receptor class B), Cyp11a1 (cholesterol side-chain cleavage enzyme), Cyp17a1 (17α-hydroxylase/17,20 lyase), and Hsd17b3 (17β-hydroxysteroid dehydrogenase) expression. In addition to acute IMO effects, repeated IMO increased transcription of Star (steroidogenic acute regulatory protein) and Arr19 (androgen receptor corepressor 19 kDa) in Leydig cells.

View Article and Find Full Text PDF

Anabolic androgenic steroids (AAS) are testosterone derivatives originally designed to enhance muscular mass and used for the treatment of many clinical conditions as well as in contraception. Despite popular interest and abuse, we still lack a broad understanding of effects of AAS on synthesis of steroid hormones on the molecular level. This study was designed to systematically analyze the effects of pharmacological/high doses of testosterone on steroidogenic machinery in Leydig cells.

View Article and Find Full Text PDF