Cancer cells often harbor chromosomes in abnormal numbers and with aberrant structure. The consequences of these chromosomal aberrations are difficult to study in cancer, and therefore several model systems have been developed in recent years. We show that human cells with extra chromosome engineered via microcell-mediated chromosome transfer often gain massive chromosomal rearrangements.
View Article and Find Full Text PDFAn abnormal number of chromosomes, or aneuploidy, accounts for most spontaneous abortions, causes developmental defects, and is associated with aging and cancer. The molecular mechanisms by which aneuploidy disrupts cellular function remain largely unknown. Here, we show that aneuploidy disrupts the morphology of the nucleus.
View Article and Find Full Text PDFCurr Opin Genet Dev
February 2019
Cancer cells differ from healthy cells by genetic information that is massively altered not only by point mutations and small insertions and deletions, but also by large scale changes such as chromosomal rearrangements as well as gains and losses of individual chromosomes or entire chromosome sets. How exactly large-scale chromosomal abnormalities contribute to tumorigenesis has been difficult to study. Remarkable progress has been recently made thanks to in vitro models that mimic large-scale chromosomal aberrations and allow their systematic analysis.
View Article and Find Full Text PDF