Publications by authors named "Maja Jelencic"

The Balkan Peninsula and the Dinaric Mountains possess extraordinary biodiversity and support one of the largest and most diverse wolf () populations in Europe. Results obtained with diverse genetic markers show west-east substructure, also seen in various other species, despite the absence of obvious barriers to movement. However, the spatial extent of the genetic clusters remains unresolved, and our aim was to combine fine-scale sampling with population and spatial genetic analyses to improve resolution of wolf genetic clusters.

View Article and Find Full Text PDF

The survival of isolated small populations is threatened by both demographic and genetic factors. Large carnivores declined for centuries in most of Europe due to habitat changes, overhunting of their natural prey and direct persecution. However, the current rewilding trends are driving many carnivore populations to expand again, possibly reverting the erosion of their genetic diversity.

View Article and Find Full Text PDF

The effective population size (N(e) ) could be the ideal parameter for monitoring populations of conservation concern as it conveniently summarizes both the evolutionary potential of the population and its sensitivity to genetic stochasticity. However, tracing its change through time is difficult in natural populations. We applied four new methods for estimating N(e) from a single sample of genotypes to trace temporal change in N(e) for bears in the Northern Dinaric Mountains.

View Article and Find Full Text PDF

Historical samples, like tanned hides and trophy skulls, can be extremely important for genetic studies of endangered or elusive species. Selection of a sampling protocol that is likely to provide sufficient amount and quality of DNA with a minimum damage to the original specimen is often critical for a success of the study. We investigated microsatellite genotyping success of DNA isolated from three different types of Eurasian lynx historical samples.

View Article and Find Full Text PDF

Among the key issues determining success of a study employing molecular genetics tools in wildlife monitoring or research is a large enough set of highly informative genetic markers and a reliable, cost effective method for their analysis. While optimized commercial genotyping kits have been developed for humans and domestic animals, such protocols are rare in wildlife research. We developed a highly optimized multiplex PCR that genotypes 12 microsatellite loci and a sex determination locus in brown bear (Ursus arctos) faecal samples in a single multiplex PCR and a single sequencer run.

View Article and Find Full Text PDF