Purpose: Although chromosome 21 is the smallest human chromosome, it is highly relevant in the pathogenicity of both cancer and congenital diseases, including Alzheimer disease and trisomy 21 (Down syndrome). In addition, cases with rare structural variants (SVs) of chromosome 21 have been reported. These events vary in size and include large chromosomal events, such as ring chromosomes and small partial aneuploidies.
View Article and Find Full Text PDFJ Inherit Metab Dis
September 2024
Genomic newborn screening (gNBS) is on the horizon given the decreasing costs of sequencing and the advanced understanding of the impact of genetic variants on health and diseases. Key to ongoing gNBS pilot studies is the selection of target diseases and associated genes to be included. In this study, we present a comprehensive analysis of seven published gene-disease lists from gNBS studies, evaluating gene-disease count, composition, group proportions, and ClinGen curations of individual disorders.
View Article and Find Full Text PDFPurpose: Pathogenic variants of FIG4 generate enlarged lysosomes and neurological and developmental disorders. To identify additional genes regulating lysosomal volume, we carried out a genome-wide activation screen to detect suppression of enlarged lysosomes in FIG4 cells.
Methods: The CRISPR-a gene activation screen utilized sgRNAs from the promoters of protein-coding genes.
Biallelic pathogenic variants in neuroblastoma-amplified sequence (NBAS) cause a pleiotropic multisystem disorder. Three clinical subgroups have been defined correlating with the localisation of pathogenic variants in the NBAS gene: variants affecting the C-terminal region of NBAS result in SOPH syndrome (short stature, optic atrophy, Pelger-Huët anomaly), variants affecting the Sec 39 domain are associated with infantile liver failure syndrome type 2 (ILFS2) and variants affecting the ß-propeller domain give rise to a combined phenotype. However, there is still unexplained phenotypic diversity across the three subgroups, challenging the current concept of genotype-phenotype correlations in NBAS-associated disease.
View Article and Find Full Text PDFSclerosing skeletal dysplasias result from an imbalance between bone formation and resorption. We identified three homozygous, C-terminally truncating AXIN1 variants in seven individuals from four families affected by macrocephaly, cranial hyperostosis, and vertebral endplate sclerosis. Other frequent findings included hip dysplasia, heart malformations, variable developmental delay, and hematological anomalies.
View Article and Find Full Text PDFProtein phosphatase 1 regulatory subunit 3F (PPP1R3F) is a member of the glycogen targeting subunits (GTSs), which belong to the large group of regulatory subunits of protein phosphatase 1 (PP1), a major eukaryotic serine/threonine protein phosphatase that regulates diverse cellular processes. Here, we describe the identification of hemizygous variants in PPP1R3F associated with a novel X-linked recessive neurodevelopmental disorder in 13 unrelated individuals. This disorder is characterized by developmental delay, mild intellectual disability, neurobehavioral issues such as autism spectrum disorder, seizures and other neurological findings including tone, gait and cerebellar abnormalities.
View Article and Find Full Text PDFPurpose: The SF3B splicing complex is composed of SF3B1-6 and PHF5A. We report a developmental disorder caused by de novo variants in PHF5A.
Methods: Clinical, genomic, and functional studies using subject-derived fibroblasts and a heterologous cellular system were performed.
Purpose: Missense variants clustering in the BTB domain region of RHOBTB2 cause a developmental and epileptic encephalopathy with early-onset seizures and severe intellectual disability.
Methods: By international collaboration, we assembled individuals with pathogenic RHOBTB2 variants and a variable spectrum of neurodevelopmental disorders. By western blotting, we investigated the consequences of missense variants in vitro.
We report 21 families displaying neurodevelopmental differences and multiple congenital anomalies while bearing a series of rare variants in (). MAP4K4 has been implicated in many signaling pathways including c-Jun N-terminal and RAS kinases and is currently under investigation as a druggable target for multiple disorders. Using several zebrafish models, we demonstrate that these human variants are either loss-of-function or dominant-negative alleles and show that decreasing Map4k4 activity causes developmental defects.
View Article and Find Full Text PDFBiallelic variants of the gene encoding for the zinc-finger protein 142 (ZNF142) have recently been associated with intellectual disability (ID), speech impairment, seizures, and movement disorders in nine individuals from five families. In this study, we obtained phenotype and genotype information of 26 further individuals from 16 families. Among the 27 different ZNF142 variants identified in the total of 35 individuals only four were missense.
View Article and Find Full Text PDFBackground: Lack of functional evidence hampers variant interpretation, leaving a large proportion of individuals with a suspected Mendelian disorder without genetic diagnosis after whole genome or whole exome sequencing (WES). Research studies advocate to further sequence transcriptomes to directly and systematically probe gene expression defects. However, collection of additional biopsies and establishment of lab workflows, analytical pipelines, and defined concepts in clinical interpretation of aberrant gene expression are still needed for adopting RNA sequencing (RNA-seq) in routine diagnostics.
View Article and Find Full Text PDFPAN2 encodes a subunit of a deadenylation complex with important functions in mRNA stability and post-transcriptional regulation of gene expression. A homozygous frameshift deletion in PAN2 was reported in a single affected individual with developmental delay and multiple congenital anomalies. Here, we describe five additional individuals from three unrelated families with homozygous predicted loss-of-function variants in PAN2.
View Article and Find Full Text PDFMASS phenotype is a connective tissue disorder clinically overlapping with Marfan syndrome and caused by pathogenic variants in FBN1. We report four patients from three families presenting with a MASS-like phenotype consisting of tall stature, arachnodactyly, spinal deformations, dural ectasia, pectus and/or feet deformations, osteoarthritis, and/or high arched palate. Gene panel sequencing was negative for FBN1 variants.
View Article and Find Full Text PDFVoltage-gated calcium (CaV) channels form three subfamilies (CaV1-3). The CaV1 and CaV2 channels are heteromeric, consisting of an α1 pore-forming subunit, associated with auxiliary CaVβ and α2δ subunits. The α2δ subunits are encoded in mammals by four genes, CACNA2D1-4.
View Article and Find Full Text PDF