Publications by authors named "Maja H Oktay"

Background: Metastasis is the leading cause of breast cancer (BC) death, and tumor cells must migrate and invade to metastasize. BC cells that express the pro-metastatic actin regulatory protein MenaINV have an enhanced ability to migrate and intravasate within the primary tumor and extravasate at secondary sites. Though chemotherapy improves patient survival, treatment with paclitaxel leads to upregulation of MenaINV and an increase in metastasis in mice.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) are a phenotypically diverse, highly plastic population of cells in the tumor microenvironment (TME) that have long been known to promote cancer progression. In this review, we summarize TAM ontogeny and polarization, and then explore how TAMs enhance tumor cell migration through the TME, thus facilitating metastasis. We also discuss how chemotherapy and host factors including diet, obesity, and race, impact TAM phenotype and cancer progression.

View Article and Find Full Text PDF

Purpose: Breast cancer cells disseminate to distant sites via tumor microenvironment of metastasis (TMEM) doorways. The TIE2 inhibitor rebastinib blocks TMEM doorway function in the PyMT mouse model of breast cancer. We aimed to assess the safety and pharmacodynamics of rebastinib plus paclitaxel or eribulin in patients with HER2-negative metastatic breast cancer (MBC).

View Article and Find Full Text PDF

Although the CXCL12/CXCR4 pathway has been prior investigated for its prometastatic and immuno- suppressive roles in the tumor microenvironment, evidence on the spatiotemporal regulation of these hallmarks has been lacking. Here, we demonstrate that CXCL12 forms a gradient specifically around cancer cell intravasation doorways, also known as Tumor Microenvironment of Metastasis (TMEM) doorways, thus facilitating the chemotactic translocation of prometastatic tumor cells expressing CXCR4 toward the perivascular TMEM doorways for subsequent entry into peripheral circulation. Fur- thermore, we demonstrate that the CXCL12-rich micro-environment around TMEM doorways may cre- ate immunosuppressive niches, whereby CD8 T cells, despite being attracted to these regions, often exhibit reduced effector functions, limiting their efficacy.

View Article and Find Full Text PDF

Tumor cell intravasation is essential for metastatic dissemination, but its exact mechanism is incompletely understood. We have previously shown that in breast cancer, the direct and stable association of a tumor cell expressing Mena, a Tie2/VEGF macrophage, and a vascular endothelial cell, creates an intravasation portal, called a "tumor microenvironment of metastasis" (TMEM) doorway, for tumor cell intravasation, leading to dissemination to distant sites. The density of TMEM doorways, also called TMEM doorway score, is a clinically validated prognostic marker of distant metastasis in breast cancer patients.

View Article and Find Full Text PDF

How dedifferentiated stem-like tumor cells evade immunosurveillance remains poorly understood. We show that the lineage-plasticity regulator SOX9, which is upregulated in dedifferentiated tumor cells, limits the number of infiltrating T lymphocytes in premalignant lesions of mouse basal-like breast cancer. SOX9-mediated immunosuppression is required for the progression of in situ tumors to invasive carcinoma.

View Article and Find Full Text PDF

Breast cancer is the most commonly diagnosed malignancy and the major leading cause of tumor-related deaths in women. It is estimated that the majority of breast tumor-related deaths are a consequence of metastasis, to which no cure exists at present. The FAK family proteins Proline-rich tyrosine kinase (PYK2) and focal adhesion kinase (FAK) are highly expressed in breast cancer, but the exact cellular and signaling mechanisms by which they regulate tumor cell invasiveness and consequent metastatic dissemination are mostly unknown.

View Article and Find Full Text PDF

Osteosarcoma is an aggressive bone malignancy with a poor prognosis. One putative proto-oncogene in osteosarcoma is SKP2, encoding a substrate recognition factor of the SCF E3 ubiquitin ligase. We previously demonstrated that Skp2 knockout in murine osteosarcoma improved survival and delayed tumorigenesis.

View Article and Find Full Text PDF

The physiology and pathophysiology of the pancreas are complex. Diseases of the pancreas, such as pancreatitis and pancreatic adenocarcinoma (PDAC) have high morbidity and mortality. Intravital imaging (IVI) is a powerful technique enabling the high-resolution imaging of tissues in both healthy and diseased states, allowing for real-time observation of cell dynamics.

View Article and Find Full Text PDF

Metastasis - the systemic spread of cancer - is the leading cause of cancer-related deaths. Although metastasis is commonly thought of as a unidirectional process wherein cells from the primary tumor disseminate and seed metastases, tumor cells in existing metastases can also redisseminate and give rise to new lesions in tertiary sites in a process known as "metastasis-from-metastases" or "metastasis-to-metastasis seeding." Metastasis-to-metastasis seeding may increase the metastatic burden and decrease the patient's quality of life and survival.

View Article and Find Full Text PDF

Black, compared to white, women with residual estrogen receptor-positive (ER+) breast cancer after neoadjuvant chemotherapy (NAC) have worse distant recurrence-free survival (DRFS). Such racial disparity may be due to difference in density of portals for systemic cancer cell dissemination, called TMEM doorways, and pro-metastatic tumor microenvironment (TME). Here, we evaluate residual cancer specimens after NAC from 96 Black and 87 white women.

View Article and Find Full Text PDF

Metastasis is a multistep process that leads to the formation of clinically detectable tumor foci at distant organs and frequently to patient demise. Only a subpopulation of breast cancer cells within the primary tumor can disseminate systemically and cause metastasis. To disseminate, cancer cells must express MenaINV, an isoform of the actin regulatory protein Mena, encoded by the ENAH gene, that endows tumor cells with transendothelial migration activity, allowing them to enter and exit the blood circulation.

View Article and Find Full Text PDF

Metastasis is a multistep process that leads to the formation of clinically detectable tumor foci at distant organs and frequently patient demise. Only a subpopulation of breast cancer cells within the primary tumor can disseminate systemically and cause metastasis. To disseminate, cancer cells must express MenaINV, an isoform of the actin-regulatory protein Mena encoded by the gene that endows tumor cells with transendothelial migration activity allowing them to enter and exit the blood circulation.

View Article and Find Full Text PDF

Navigation through the bulk tumour, entry into the blood vasculature, survival in the circulation, exit at distant sites and resumption of proliferation are all steps necessary for tumour cells to successfully metastasize. The ability of tumour cells to complete these steps is highly dependent on the timing and sequence of the interactions that these cells have with the tumour microenvironment (TME), including stromal cells, the extracellular matrix and soluble factors. The TME thus plays a major role in determining the overall metastatic phenotype of tumours.

View Article and Find Full Text PDF
Article Synopsis
  • Metastatic breast cancer spreads through specialized sites known as tumor microenvironment of metastasis (TMEM) doorways, which involve specific cell interactions that increase the risk of distant metastasis.
  • A new MRI technique, TMEM Activity-MRI, effectively detects these TMEM-associated vascular openings and correlates well with TMEM doorway counts in breast cancer patients and mouse models.
  • TMEM Activity-MRI shows potential as a non-invasive tool for assessing metastatic risk and monitoring treatment responses in localized breast cancer cases.
View Article and Find Full Text PDF

Pancreatitis and pancreatic ductal adenocarcinoma (PDAC) are grave illnesses with high levels of morbidity and mortality. Intravital imaging (IVI) is a powerful technique for visualizing physiological processes in both health and disease. However, the application of IVI to the murine pancreas presents significant challenges, as it is a deep, compliant, visceral organ that is difficult to access, easily damaged and susceptible to motion artefacts.

View Article and Find Full Text PDF

Background: Black race is associated with worse outcome in patients with breast cancer. The distant relapse-free survival (DRFS) between Black and White women with localized breast cancer who participated in National Cancer Institute-sponsored clinical trial was evaluated.

Methods: Pooled data were analyzed from 8 National Surgical Adjuvant Breast and Bowel Project (NSABP) trials including 9702 women with localized breast cancer treated with adjuvant chemotherapy (AC, n = 7485) or neoadjuvant chemotherapy (NAC, n = 2217), who self-reported as Black (n = 1070) or White (n = 8632) race.

View Article and Find Full Text PDF

Purpose: to develop several digital pathology-based machine vision algorithms for combining TMEM and Mena scores and determine if a combination of these biomarkers improves the ability to predict development of distant metastasis over and above that of either biomarker alone.

Methods: This retrospective study included a subset of 130 patients (65 patients with no recurrence and 65 patients with a recurrence at 5 years) from the Calgary Tamoxifen cohort of breast cancer patients. Patients had confirmed invasive breast cancer and received adjuvant tamoxifen therapy.

View Article and Find Full Text PDF
Article Synopsis
  • - Metastases begin with disseminated tumor cells (DTCs) that spread from the primary tumor to other organs, and their fate (active or dormant) is influenced by the primary tumor's microenvironment.
  • - Using a technique called WHRIL, researchers studied DTCs from breast tumors in live mice, finding that these DTCs showed better retention, faster movement, and higher survival rates compared to those specifically induced to metastasize.
  • - The study identifies that certain macrophages in the primary tumor can enhance DTC characteristics that promote both spreading and dormancy, providing new insights into how tumor environments can influence cancer progression.
View Article and Find Full Text PDF

Tissues are heterogeneous with respect to cellular and non-cellular components and in the dynamic interactions between these elements. To study the behaviour and fate of individual cells in these complex tissues, intravital microscopy (IVM) techniques such as multiphoton microscopy have been developed to visualize intact and live tissues at cellular and subcellular resolution. IVM experiments have revealed unique insights into the dynamic interplay between different cell types and their local environment, and how this drives morphogenesis and homeostasis of tissues, inflammation and immune responses, and the development of various diseases.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) play an important role during metastasis, but the dynamic behavior and induction mechanisms of CSCs are not well understood. Here, we employ high-resolution intravital microscopy using a CSC biosensor to directly observe CSCs in live mice with mammary tumors. CSCs display the slow-migratory, invadopod-rich phenotype that is the hallmark of disseminating tumor cells.

View Article and Find Full Text PDF

The Tie2 receptor tyrosine kinase is expressed in vascular endothelial cells, tumor-associated macrophages, and tumor cells and has been a major focus of research in therapies targeting the tumor microenvironment. The most extensively studied Tie2 ligands are Angiopoietin 1 and 2 (Ang1, Ang2). Ang1 plays a critical role in vessel maturation, endothelial cell migration, and survival.

View Article and Find Full Text PDF

Introduction: Ductal carcinoma in situ (DCIS) of the breast is a non-obligate precursor of invasive breast cancer (IBC). Many DCIS patients are either undertreated or overtreated. The overarching goal of the study described here is to facilitate detection of patients with DCIS at risk of IBC development.

View Article and Find Full Text PDF

The degree of metastatic disease varies widely among patients with cancer and affects clinical outcomes. However, the biological and functional differences that drive the extent of metastasis are poorly understood. We analyzed primary tumors and paired metastases using a multifluorescent lineage-labeled mouse model of pancreatic ductal adenocarcinoma (PDAC)-a tumor type in which most patients present with metastases.

View Article and Find Full Text PDF

Metastasis, accounting for ~90% of cancer-related mortality, involves the systemic spread of cancer cells from primary tumors to secondary sites such as the bone, brain, and lung. Although extensively studied, the mechanistic details of this process remain poorly understood. While common imaging modalities, including computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI), offer varying degrees of gross visualization, each lacks the temporal and spatial resolution necessary to detect the dynamics of individual tumor cells.

View Article and Find Full Text PDF