Purpose: To meet the urgent need for accessible homologous recombination-deficient (HRD) test options, we validated a laboratory-developed test (LDT) and a functional RAD51 assay to assess patients with ovarian cancer and predict the clinical benefit of poly(ADP-ribose) polymerase inhibitor therapy.
Methods: Optimization of the LDT cutoff and validation on the basis of samples from 91 patients enrolled in the ENGOT-ov24/NSGO-AVANOVA1&2 trial (ClinicalTrials.gov identifier: NCT02354131), previously subjected to commercial CDx HRD testing (CDx).
Purpose: Homologous recombination (HR) deficiency (HRD) is one of the key determinants of PARP inhibitor response in ovarian cancer, and its accurate detection in tumor biopsies is expected to improve the efficacy of this therapy. Because HRD induces a wide array of genomic aberrations, mutational signatures may serve as a companion diagnostic to identify PARP inhibitor-responsive cases.
Experimental Design: From the The Cancer Genome Atlas (TCGA) whole-exome sequencing (WES) data, we extracted different types of mutational signature-based HRD measures, such as the HRD score, genome-wide LOH, and HRDetect trained on ovarian and breast cancer-specific sequencing data.
In 2017, 10 topics were selected as major clinical research advances in gynecologic oncology. For cervical cancer, efficacy and safety analysis results of a 9-valent human papillomavirus (HPV) vaccine and long-term impact of reduced dose of quadrivalent vaccine were updated. Brief introduction of KEYNOTE trials of pembrolizumab, a monoclonal antibody that blocks the interaction between programmed death (PD)-1 and its ligands, PD-L1 and PD-L2, followed.
View Article and Find Full Text PDF