Publications by authors named "Maizel A"

Plant development relies on the precise coordination of cell growth, which is influenced by the mechanical constraints imposed by rigid cell walls. The hormone auxin plays a crucial role in regulating this growth by altering the mechanical properties of cell walls. During the postembryonic formation of lateral roots, pericycle cells deep within the main root are triggered by auxin to resume growth and divide to form a new root.

View Article and Find Full Text PDF

Lateral root (LR) formation in Arabidopsis is a continuous, repetitive, post-embryonic process regulated by a series of coordinated events and tuned by the environment. It shapes the root system, enabling plants to efficiently explore soil resources and adapt to changing environmental conditions. Although the auxin-regulated modules responsible for LR morphogenesis and emergence are well documented, less is known about the initial priming.

View Article and Find Full Text PDF

Molecular cloning is a crucial technique in genetic engineering that enables the precise design of synthetic transcriptional units (TUs) and the manipulation of genomes. GreenGate and several other modular molecular cloning systems were developed about ten years ago and are widely used in plant research. All these systems define grammars for assembling transcriptional units from building blocks, cloned as Level 0 modules flanked by four-base pair overhangs and recognition sites for a particular Type IIs endonuclease.

View Article and Find Full Text PDF

To relate gene networks and organ shape, one needs to address two wicked problems: i) Gene expression is often variable locally, and shape is reproducible globally; ii) gene expression can have cascading effects on tissue mechanics, with possibly counterintuitive consequences for the final organ shape. Here, we address such wicked problems, taking advantage of simpler plant organ development where shape only emerges from cell division and elongation. We confirm that mutation in VERNALIZATION INDEPENDENCE 3 (), a subunit of the conserved polymerase-associated factor 1 complex (Paf1C), increases gene expression variability in Arabidopsis.

View Article and Find Full Text PDF
Alexis Maizel.

Curr Biol

May 2023

Interview with Alexis Maizel, who studies plant morphogenesis at Heidelberg University.

View Article and Find Full Text PDF
Article Synopsis
  • - Plant organogenesis relies on aligning metabolic resources with developmental programs, particularly in how roots form in Arabidopsis through lateral (LRs) and adventitious roots (ARs).
  • - Lateral root formation is driven by auxin and specific transcription factors, while adventitious roots depend on the activation of LBD16 by auxin and WOX11.
  • - The target-of-rapamycin (TOR) kinase plays a crucial role in regulating these processes by influencing the translation of key transcription factors involved in root branching and responding to metabolic signals.
View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) are frequently found at high concentrations in the subsurface of aqueous film forming foam (AFFF)-impacted sites. Geochemical parameters affect the release of PFASs from source area soils into groundwater but have not been extensively studied for soils that have been historically impacted with AFFF. This study investigated the effects of pH and salt concentrations on release of anionic and zwitterionic PFASs from AFFF-impacted soils in flow-through saturated columns.

View Article and Find Full Text PDF

UV-sulfite has been shown to effectively degrade per- and polyfluoroalkyl substances (PFASs) in single-solute experiments. We recently reported treatment of 15 PFASs, including perfluoroalkyl sulfonic acids (PFSAs), perfluoroalkyl carboxylic acids (PFCAs), and fluorotelomer sulfonic acids (FTSs), detected in aqueous film-forming foam (AFFF) using high-resolution liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) targeted analysis. Here, we extend the analysis within those original reaction solutions to include the wider set of PFASs in AFFF for which reactivity is largely unknown by applying recently established LC-QTOF-MS suspect screening and semiquantitative analysis protocols.

View Article and Find Full Text PDF

Maintenance and homeostasis of the stem cell niche (SCN) in the Arabidopsis root is essential for growth and development of all root cell types. The SCN is organized around a quiescent center (QC) maintaining the stemness of cells in direct contact. The key transcription factors (TFs) WUSCHEL-RELATED HOMEOBOX 5 (WOX5) and PLETHORAs (PLTs) are expressed in the SCN where they maintain the QC and regulate distal columella stem cell (CSC) fate.

View Article and Find Full Text PDF

Precise coordination between cells and tissues is essential for differential growth in plants. During lateral root formation in , the endodermis is actively remodeled to allow outgrowth of the new organ. Here, we show that microtubule arrays facing lateral root founder cells display a higher order compared to arrays on the opposite side of the same cell, and this asymmetry is required for endodermal remodeling and lateral root initiation.

View Article and Find Full Text PDF

Poly- and perfluorinated alkyl substances (PFASs) frequently co-occur with fuel-derived contaminants because of the use of aqueous film-forming foam (AFFF). Biosparging is a common remediation technology that injects oxygen into the saturated zone to encourage aerobic biodegradation, thereby altering aquifer redox conditions and potentially facilitating the biotransformation of polyfluorinated substances. Between 136 and 280 pore volumes of nitrogen-sparged or oxygen-sparged artificial groundwater amended with toluene were pumped through four saturated, AFFF-impacted soil columns to assess impacts on PFAS release and transformation.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) are highly mobile in the saturated subsurface, yet aqueous film-forming foam (AFFF)-impacted source zones appear to be long lasting PFAS reservoirs. This study examined the release of over one hundred anionic and zwitterionic PFASs from two AFFF-impacted surface soils under saturated conditions with packed soil columns. Perfluoroalkyl acids (PFAAs) were released more rapidly than their polyfluorinated precursors, while anionic PFASs that were present in partially uncharged states were released more slowly than PFASs that were present entirely as anions, as were zwitterionic PFASs with terminal cationic functional groups when compared with analogous zwitterions with only anionic terminal groups.

View Article and Find Full Text PDF

Diffusion through a water saturated silty clay soil column was measured for six perfluoroalkyl acids (PFAAs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). An aqueous pore diffusion model, which incorporated linear adsorption parameters measured independently in batch tests and a tortuosity factor determined independently using a bromide tracer test, was used to describe the experimental diffusion data. The diffusion model substantially underpredicted PFAA diffusion through the soil column for the more strongly sorbing PFAAs (most notably PFOS).

View Article and Find Full Text PDF

Lateral root formation determines to a large extent the ability of plants to forage their environment and thus their growth. In Arabidopsis thaliana and other angiosperms, lateral root initiation requires radial cell expansion and several rounds of anticlinal cell divisions that give rise to a central core of small cells, which express different markers than the larger surrounding cells. These small central cells then switch their plane of divisions to periclinal and give rise to seemingly morphologically similar daughter cells that have different identities and establish the different cell types of the new root.

View Article and Find Full Text PDF

Quantitative analysis of plant and animal morphogenesis requires accurate segmentation of individual cells in volumetric images of growing organs. In the last years, deep learning has provided robust automated algorithms that approach human performance, with applications to bio-image analysis now starting to emerge. Here, we present PlantSeg, a pipeline for volumetric segmentation of plant tissues into cells.

View Article and Find Full Text PDF

Intercellular communication in plants coordinates cellular functions during growth and development, and in response to environmental cues. RNAs figure prominently among the mobile signaling molecules used. Many hundreds of RNA species move over short and long distances, and can be mutually exchanged in biotic interactions.

View Article and Find Full Text PDF

Ultraviolet photochemical reaction of sulfite (SO) photosensitizer generates strongly reducing hydrated electrons (e; NHE = -2.9 V) that have been shown to effectively degrade individual per- and polyfluoroalkyl substances (PFASs), including perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). However, treatment of complex PFAS mixtures in aqueous film-forming foam (AFFF) remains largely unknown.

View Article and Find Full Text PDF

Poly- and perfluoroalkyl substances (PFASs) derived from aqueous film-forming foam (AFFF) are increasingly recognized as groundwater contaminants, though the composition and distribution of AFFF-derived PFASs associated with soils and subsurface sediments remain largely unknown. This is particularly true for zwitterionic and cationic PFASs, which may be incompletely extracted from subsurface solids by analytical methods developed for anionic PFASs. Therefore, a method involving sequential basic and acidic methanol extractions was developed and evaluated for recovery of anionic, cationic, and zwitterionic PFASs from field-collected, AFFF-impacted soils.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding plant growth requires collecting quantitative data across various timeframes and scales, which recent imaging techniques are increasingly facilitating.
  • Modern imaging methodologies allow for detailed analysis of plant development, capturing everything from molecular activity to physical traits in both lab and field environments, often processing multiple samples at once.
  • The integration of high-throughput imaging with extensive molecular data will enhance the capability for systems-level modeling, paving the way for rapid advancements in functional genomics related to plant growth.
View Article and Find Full Text PDF

Root branching is influenced by the soil environment and exhibits a high level of plasticity. We report that the radial positioning of emerging lateral roots is influenced by their hydrological environment during early developmental stages. New lateral root primordia have both a high degree of flexibility in terms of initiation and development angle towards the available water.

View Article and Find Full Text PDF

Plant organ growth is widely accepted to be determined by cell division and cell expansion, but, unlike that in animals, the contribution of cell elimination has rarely been recognized. We investigated this paradigm during Arabidopsis lateral root formation, when the lateral root primordia (LRP) must traverse three overlying cell layers within the parent root. A subset of LRP-overlying cells displayed the induction of marker genes for cell types undergoing developmental cell death, and their cell death was detected by electron, confocal, and light sheet microscopy techniques.

View Article and Find Full Text PDF