Self-powered broadband photodetectors (SPBPDs) hold great potential for next-generation optoelectronic applications, but their performance is often limited by interface defects that impair charge transport and increase recombination losses. In this work, we report the enhancement of the photodetection efficiency of SPBPDs by partially substituting copper (Cu) with silver (Ag) in kesterite CuZnSnS (ACZTS) thin films. Varying Ag concentrations (0%, 2%, 4%, 6%) are incorporated into the CZTS layer, forming a TiO/ACZTS heterojunction in superstrate configuration fabricated via a low-cost sol-gel spin-coating technique with low-temperature open air annealing avoiding conventional postdeposition sulfurization or selenization.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Immune checkpoint blockade (ICB) has fundamentally transformed cancer treat-ment by unlocking the potency of CD8+ T cells by targeting the suppression of the CTLA-4 and PD-1/PD-L1 pathways. Nevertheless, ICBs are associated with the risk of severe side effects and resistance in certain patients, driving the search for novel and safer immune check-point modulators. Monoamine Oxidase A (MAO-A) plays an unexpected role in the field of cancer.
View Article and Find Full Text PDFThe isoquinoline core is present in one of the largest subsets of bioactive natural products. The multifunctional isoquinoline core exerts diverse bioactivity, resulting in the development of numerous isoquinoline-based drugs and molecules that are currently under clinical trials. We developed a new approach for phosphite-mediated [1,2] alkyl migration for an overall -C-H alkylation -alkylation of isoquinoline.
View Article and Find Full Text PDFCell-secreted nanovesicles of endosomal origin, called exosomes, are vital for mediating intracellular communication. As local or distal transporters of intracellular cargo, they reflect the unique characteristics of secretory cells and establish cell-specific interactions via characteristic surface proteins and receptors. With the advent of rapid isolation, purification, and identification techniques, exosomes have become an attractive choice for disease diagnosis (exosomal content as biomarkers), cell-free therapy, and tissue regeneration.
View Article and Find Full Text PDFThe herbicide Paraquat, widely used for efficient weed control, poses significant health risks to humans viz., severe toxicity to vital organs and induction of neurodegenerative disorder like Parkinson's disease, underscoring the urgent need for developing sensitive detection methods for the herbicide. This study aims at fabricating a novel SERS-active substrate SA-LB/Ag (silver nano-colloids adsorbed on Langmuir-Blodgett film of stearic acid), as a SERS based sensor having high sensitivity, uniformity, and reproducibility to detect ultra-trace amounts of paraquat.
View Article and Find Full Text PDFWe present a systematic study on how alkali metal salts, like NaCl and NaI, affect negatively charged phospholipid vesicles using a range of experimental methods. Our goal was to find out how chain saturation and cholesterol affect the interaction between the ions and the membrane. An isothermal titration calorimetry study on large unilamellar vesicles made from dimyristoyl phosphatidylcholine (DMPC) revealed that Na shows higher binding affinity to the gel phase at 15 °C compared to the fluid phase at 30 °C.
View Article and Find Full Text PDFWe studied the intersystem crossing (ISC) property of red-light absorbing heavy atom-free dihydronaphtho[]-fused Bodipy derivatives (with phenyl group attached at the lower rim via ethylene bridge, taking constrained geometry, i.e., and the half-oxidized product ) and dispiroflourene[]-fused Bodipy () that have a twisted π-conjugated framework.
View Article and Find Full Text PDFCrohn's disease (CD) is a complex and heterogeneous condition with no perfect preclinical model or cure. To address this, we explore adult stem cell-derived organoids that retain their tissue identity and disease-driving traits. We prospectively create a biobank of CD patient-derived organoid cultures (PDOs) from colonic biopsies of 53 subjects across all clinical subtypes and healthy subjects.
View Article and Find Full Text PDFCopper nanoclusters (Cu NCs) characterized by their well-defined electronic and optical properties are an ideal platform for organic photocatalysis and exploring atomic-level behaviors. However, their potential as greener, efficient catalysts for challenging reactions like decarboxylative oxygenation under mild conditions remains unexplored. Herein, we present Cu(Nap)(PPh)H (hereafter CuNap), protected by 1-naphthalene thiolate (Nap), which performs well in decarboxylative oxidation (90% yield) under photochemical conditions.
View Article and Find Full Text PDFIn chronic lymphocytic leukemia (CLL), survival of neoplastic cells depends on microenvironmental signals at lymphoid sites where the crosstalk between the integrin VLA-4 (CD49d/CD29), expressed in ~40% of CLL, and the B-cell receptor (BCR) occurs. Here, BCR engagement inside-out activates VLA-4, thus enhancing VLA-4-mediated adhesion of CLL cells, which in turn obtain pro-survival signals from the surrounding microenvironment. We report that the BCR is also able to effectively inside-out activate the VLA-4 integrin in circulating CD49d-expressing CLL cells through an autonomous antigen-independent BCR signaling.
View Article and Find Full Text PDFRadioactive iodine isotopes from nuclear-related activities, present substantial risks to human health and the environment. Developing effective materials for the capture and storage of these hazardous molecules is paramount. Traditionally, nonporous solids were historically considered ineffective for adsorbing target species.
View Article and Find Full Text PDFThis study explores the challenge of antimicrobial resistance by investigating the utilization of zinc oxide (ZnO) and copper oxide (CuO) nanoparticles (NPs) to combat antibiotic-resistant bacteria in wastewater treatment plants (WWTPs). The synthesized metal oxide NPs underwent thorough characterization through various analytical techniques, confirming their nanoparticulate nature. Electronic absorption and X-ray diffraction (XRD) analyses revealed successful reduction processes and crystalline properties, respectively.
View Article and Find Full Text PDFIn our quest to find improved anticancer therapeutics, we expedite the lead optimization of ()-1-((3,4,5-trimethoxybenzylidene)amino)-4-(3,4,5-trimethoxyphenyl)imidazo[1,2-]quinoxaline-2-carbonitrile (6b), an EGFR inhibitor previously discovered in our laboratory through an in-house screening program. The lead optimization was rationally initiated considering the catalytic site of EGFR. We synthesized twenty-nine new analogues of 6b and assessed their anticancer activities.
View Article and Find Full Text PDFThe dynamic interplay of coordination bonds within metal-organic cages offers a unique avenue for structural evolution in response to external stimuli, presenting a promising strategy for the construction of chiral assemblies. This adaptability is crucial for the selective synthesis of homochiral assemblies and advancement of asymmetric catalysis. In this study, we report the self-assembly of an achiral square-planar Pd(II) acceptor with a C-symmetric tetrapyridyl donor resulted in the formation of a racemic mixture of the chiral octahedral cage PdL.
View Article and Find Full Text PDFWe have demonstrated -substituted 2-pyridones as an ,-directing group for selective C(sp)-H-activated thiolation, selenylation, and sulfonamidation of ortho C-H bonds of benzamides. This method utilizes a cost-effective Cu(II)-salt catalyst instead of precious metal catalysts, achieving high yields, including gram-scale synthesis and excellent functional group tolerance. We applied this protocol to access 30 different compounds with high yields, demonstrating thiolation of fluorine-substituted benzamides as well.
View Article and Find Full Text PDFThe chemically triggered reversible switching of pH-responsive hydrazones involves rotary motion-induced configurational changes, serving as a prototype for constructing an array of molecular machines. Typically, the configurational isomerization of such switches into two distinct forms (E/Z) occurs through the alteration of the pH the medium, achieved by successive additions of acid and base stimuli. However, this process results in intermittent operation due to the concomitant accumulation of salt after each cycle, limiting switching performance to only a few cycles (5-6).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
May 2024
We prepared a naturally occurring flavanoid namely quercetin from tea leaves and analyzed by Absorption, Emission, FT-IR, H, C nmr spectra and ESI-MS analysis. The inclusion behavior of quercetin in cyclodextrins like α-, β-, γ-, per-6-ABCD and mono-6-ABCD cavities were supported such as UV-vis., Emission, FT-IR and ICD spectra and energy minimization studies.
View Article and Find Full Text PDFThe healing of osteochondral defects (OCDs) that result from injury, osteochondritis, or osteoarthritis and bear lesions in the cartilage and bone, pain, and loss of joint function in middle- and old-age individuals presents challenges to clinical practitioners because of non-regenerative cartilage and the limitations of current therapies. Bioactive peptide-based osteochondral (OC) tissue regeneration is becoming more popular because it does not have the immunogenicity, misfolding, or denaturation problems associated with original proteins. Periodically, reviews are published on the regeneration of bone and cartilage separately; however, none of them addressed the simultaneous healing of these tissues in the complicated heterogeneous environment of the osteochondral (OC) interface.
View Article and Find Full Text PDFBioengineering (Basel)
February 2024
Preterm birth (PTB) is the primary cause of neonatal mortality and long-term disabilities. The unknown mechanism behind PTB makes diagnosis difficult, yet early detection is necessary for controlling and averting related consequences. The primary focus of this work is to provide an overview of the known risk factors associated with preterm labor and the conventional and advanced procedures for early detection of PTB, including multi-omics and artificial intelligence/machine learning (AI/ML)- based approaches.
View Article and Find Full Text PDFThe adverse effects of arsenic-chelating drugs make it essential to replace invasive chelating therapy with non-invasive oral therapy for arsenic poisoning. The goal of the current investigation was to determine whether the uterine damage caused by arsenization could be repaired by the n-butanol fraction of Moringa oleifera seed (NB). The rats were orally administered with arsenic (10 mg/kg BW) for the initial 8 days, followed by NB (50 mg/kg) for the next 8 days without arsenic.
View Article and Find Full Text PDFTranslating nature's successful design principle of solution-based supramolecular self-assembling to broad applications─ranging from renewable energy and information technology to nanomedicine─requires a fundamental understanding of supramolecular hierarchical assembly. Though the forces behind self-assembly (e.g.
View Article and Find Full Text PDFThe naked mole-rat (NMR) Heterocephalus glaber (from the Greek/latin words ἕτερος, heteros = divergent, κεφαλή, kephalē = head and glabra = hairless) was first described by Rüppell (Fig. 1) and belongs to the Hystricognath (from the Greek words ὕστριξ, hystrix = porcupine and γνάθος, gnathos = jaw) as a suborder of rodents. NMR are characterized by the highest longevity among rodents and reveal a profound cancer resistance.
View Article and Find Full Text PDF