Publications by authors named "Maitrayee Ghosh"

Diabetes mellitus is a chronic metabolic disorder marked by hyperglycemia, resistance to insulin, and impaired function of the pancreatic β-cells; it advances into more serious complications like nephropathy, neuropathy, cardiovascular disease, and retinopathy; herbal medicine has indicated promise in not just mitigating the symptoms but also in managing the complications. This review would aim to evaluate the pharmacological aspect of the botanical therapies Anacardium occidentale, Allium sativum, Urtica dioica, and Cinnamomum zeylanicum, as well as their bioactive phytochemicals, quercetin, resveratrol, berberine, and epigallocatechin gallate (EGCG). In this review, we discuss their mechanisms for secreting the insulin sensitizers, carbohydrate-hydrolyzing enzymes, reduction in oxidative stress and effectiveness against diabetic complications-all through sensitivity to insulin.

View Article and Find Full Text PDF
Article Synopsis
  • The brain is protected by various barriers, including the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB), which regulate what substances can enter, making drug delivery challenging.
  • The BBB is a tight junction formed by multiple cell types that prevents solutes from freely diffusing into the brain, while the BCSFB is located at the choroid plexus and is more permeable.
  • Nasal drug delivery offers a promising alternative for directly transporting therapies to the brain, and the review discusses its mechanisms, various formulations, clinical trials, and patents, highlighting its potential for targeted drug delivery.
View Article and Find Full Text PDF

Obesity and Type 2 diabetes are prevalent metabolic dysfunctions that present significant health challenges worldwide. Available cures for these ailments have constraints with accompanying unwanted effects that persistently exist. Compounds originated from plants have recently been introduced as hopeful remedies to treat metabolic disorders because of their diverse pharmacological activities.

View Article and Find Full Text PDF

Organometal halide perovskites are promising materials for optoelectronic applications, whose commercial realization depends critically on their stability under multiple environmental factors. In this study, a methylammonium lead bromide (MAPbBr) single crystal was cleaved and exposed to simultaneous oxygen and light illumination under ultrahigh vacuum (UHV). The exposure process was monitored using X-ray photoelectron spectroscopy (XPS) with precise control of the exposure time and oxygen pressure.

View Article and Find Full Text PDF

Hydrogels are a network of crosslinked polymers which can hold a huge amount of water in their matrix. These might be soft, flexible, and porous resembling living tissues. The incorporation of different biocompatible materials and nanostructures into the hydrogels has led to emergence of multifunctional hydrogels with advanced properties.

View Article and Find Full Text PDF

The physical chemistry of iron at the inner-core conditions is key to understanding the evolution and habitability of Earth and super-Earth planets. Based on full first-principles simulations, we report cooperative diffusion along the longitudinally fast⟨111⟩directions of body-centered cubic (bcc) iron in temperature ranges of up to 2000-4000 K below melting and pressures of ∼300-4000 GPa. The diffusion is due to the low energy barrier in the corresponding direction and is accompanied by mechanical and dynamical stability, as well as strong elastic anisotropy of bcc iron.

View Article and Find Full Text PDF