Publications by authors named "Maite Solas"

Bariatric surgery is effective for the treatment and remission of obesity and type 2 diabetes, but pharmacological approaches which exert similar metabolic adaptations are needed to avoid post-surgical complications. Here we show how G49, an oxyntomodulin (OXM) analog and dual glucagon/glucagon-like peptide-1 receptor (GCGR/GLP-1R) agonist, triggers an inter-organ crosstalk between adipose tissue, pancreas, and liver which is initiated by a rapid release of free fatty acids (FFAs) by white adipose tissue (WAT) in a GCGR-dependent manner. This interactome leads to elevations in adiponectin and fibroblast growth factor 21 (FGF21), causing WAT beiging, brown adipose tissue (BAT) activation, increased energy expenditure (EE) and weight loss.

View Article and Find Full Text PDF

Astrocytes are considered an essential source of blood-borne glucose or its metabolites to neurons. Nonetheless, the necessity of the main astrocyte glucose transporter, i.e.

View Article and Find Full Text PDF
Article Synopsis
  • Empty zein nanoparticles (NP) were found to lower blood sugar levels in rats by increasing GLP-1 secretion and were tested for their impact on lifespan in two animal models: C. elegans and SAMP8 mice.
  • In C. elegans, NP extended the average lifespan by 7 days, with reductions in glucose, fat, and oxidative stress markers, alongside increased expression of genes related to detoxification (daf-16 and skn-1).
  • Similarly, in SAMP8 mice, NP supplementation led to a 28% increase in mean lifespan, supporting the idea that these nanoparticles have a protective effect against aging and oxidative damage.
View Article and Find Full Text PDF

Astrocytes play a multifaceted role regulating brain glucose metabolism, ion homeostasis, neurotransmitters clearance, and water dynamics being essential in supporting synaptic function. Under different pathological conditions such as brain stroke, epilepsy, and neurodegenerative disorders, excitotoxicity plays a crucial role, however, the contribution of astrocytic activity in protecting neurons from excitotoxicity-induced damage is yet to be fully understood. In this work, we evaluated the effect of astrocytic activation by Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) on brain glucose metabolism in wild-type (WT) mice, and we investigated the effects of sustained astrocyte activation following an insult induced by intrahippocampal (iHPC) kainic acid (KA) injection using 2-deoxy-2-[F]-fluoro-D-glucose (F-FDG) positron emission tomography (PET) imaging, along with behavioral test, nuclear magnetic resonance (NMR) spectroscopy and histochemistry.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia, characterized by an early olfactory dysfunction, progressive memory loss, and behavioral deterioration. Albeit substantial progress has been made in characterizing AD-associated molecular and cellular events, there is an unmet clinical need for new therapies. In this study, olfactory tract proteotyping performed in controls and AD subjects (n = 17/group) showed a Braak stage-dependent proteostatic impairment accompanied by the progressive modulation of amyloid precursor protein and tau functional interactomes.

View Article and Find Full Text PDF

One of the most biologically relevant functions of astrocytes within the CNS is the regulation of synaptic transmission, i.e., the physiological basis for information transmission between neurons.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative disorder characterized by cognitive decline, memory loss, behavioral changes, and other neurological symptoms. Considering the urgent need for new AD therapeutics, in the present study we designed, synthesized, and evaluated multitarget compounds structurally inspired by sulfonylureas and pitolisant with the aim of obtaining multitarget ligands for AD treatment. Due to the diversity of chemical scaffolds, a novel strategy has been adopted by merging into one structure moieties displaying HR antagonism and acetylcholinesterase inhibition.

View Article and Find Full Text PDF

In this study, the plausible role of trimethylamine N-oxide (TMAO), a microbiota metabolite, was investigated as a link between peripheral inflammation and the inflammation of the central nervous system using different cell lines. TMAO treatment favored the differentiation of adipocytes from preadipocytes (3T3-L1 cell line). In macrophages (RAW 264.

View Article and Find Full Text PDF

Sirtuin 2 (SIRT2) has been proposed to have a central role on aging, inflammation, cancer and neurodegenerative diseases; however, its specific function remains controversial. Recent studies propose SIRT2 pharmacological inhibition as a therapeutic strategy for several neurodegenerative diseases including Alzheimer's disease (AD). Surprisingly, none of these published studies regarding the potential interest of SIRT2 inhibition has assessed the peripheral adverse side consequences of this treatment.

View Article and Find Full Text PDF

c-Jun N-terminal kinases (JNKs) are a family of protein kinases activated by a myriad of stimuli consequently modulating a vast range of biological processes. In human postmortem brain samples affected with Alzheimer's disease (AD), JNK overactivation has been described; however, its role in AD onset and progression is still under debate. One of the earliest affected areas in the pathology is the entorhinal cortex (EC).

View Article and Find Full Text PDF

c-Jun N-terminal kinase 3 (JNK3) is suggested to play a key role in neurodegenerative disorders, especially in Alzheimer's disease (AD). However, it remains unclear whether JNK or amyloid β (Aβ) appears first in the disease onset. Postmortem brain tissues from four dementia subtypes of patients (frontotemporal dementia, Lewy body dementia, vascular dementia, and AD) were used to measure activated JNK (pJNK) and Aβ levels.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the main type of dementia and is a disease with a profound socioeconomic burden due to the lack of effective treatment. In addition to genetics and environmental factors, AD is highly associated with metabolic syndrome, defined as the combination of hypertension, hyperlipidemia, obesity and type 2 diabetes mellitus (T2DM). Among these risk factors, the connection between AD and T2DM has been deeply studied.

View Article and Find Full Text PDF

Obesity and aging are becoming increasingly prevalent across the globe. It has been established that aging is the major risk factor for Alzheimer's disease (AD), and it is becoming increasingly evident that obesity and the associated insulin resistance are also notably relevant risk factors. The biological plausibility of the link between high adiposity, insulin resistance, and dementia is central for understanding AD etiology, and to form bases for prevention efforts to decrease the disease burden.

View Article and Find Full Text PDF

The brain is one of the most energy-consuming organs in the body. Satisfying such energy demand requires compartmentalized, cell-specific metabolic processes, known to be complementary and intimately coupled. Thus, the brain relies on thoroughly orchestrated energy-obtaining agents, processes and molecular features, such as the neurovascular unit, the astrocyte-neuron metabolic coupling, and the cellular distribution of energy substrate transporters.

View Article and Find Full Text PDF

It has been established that ageing is the major risk factor for cognitive deficiency and it is becoming increasingly evident that insulin resistance is another factor. Biological plausibility for a link between insulin resistance and dementia is relevant for understanding disease etiology, and to form bases for prevention efforts to decrease disease burden. In the present study, peripheral and central insulin resistance was found in SAMP8 mice (aging mouse model) accompanied by cognitive deficiencies.

View Article and Find Full Text PDF

Even though the involvement of serotonin (5-hydroxytryptamine; 5-HT) and its receptors in Alzheimer's disease (AD) is widely accepted, data on the expression and the role of 5-HT receptors in AD is relatively limited. Therefore, the objective of the present work was to study the expression of serotonergic 5-HT receptors in postmortem samples of AD brains and correlate it with neurotransmitter levels, cognition and behavior. The study population consisted of clinically well-characterized and neuropathologically confirmed AD patients (n = 42) and age-matched control subjects (n = 18).

View Article and Find Full Text PDF

Blood-Brain barrier (BBB) disruption is a hallmark of central nervous system (CNS) dysfunction, and oxidative stress is one of the molecular mechanisms that may underlie this process. NADPH oxidases (NOX) are involved in oxidative stress-mediated vascular dysfunction and participate in the pathophysiology of its target organs. The NADPH oxidase 5 (NOX5) isoform is absent in rodents, and although little is known about the role it may play in disrupting the BBB, it has recently been implicated in experimental stroke.

View Article and Find Full Text PDF

Recent investigations have increased the interest on the connection between the microorganisms inhabiting the gut (gut microbiota) and human health. An imbalance of the intestinal bacteria representation (dysbiosis) could lead to different diseases, ranging from obesity and diabetes, to neurological disorders including Alzheimer's disease (AD). The term "gut-brain axis" refers to a crosstalk between the brain and the gut involving multiple overlapping pathways, including the autonomic, neuroendocrine, and immune systems as well as bacterial metabolites and neuromodulatory molecules.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease. AD is the main cause of dementia worldwide and aging is the main risk factor for developing the illness. AD classical diagnostic criteria rely on clinical data.

View Article and Find Full Text PDF

The brain depends on glucose as a source of energy. This implies the presence of glucose transporters, being GLUT1 and GLUT3 the most relevant. Expression of GLUT12 is found in mouse and human brain at low levels.

View Article and Find Full Text PDF

Trimethylamine N-oxide (TMAO) is a molecule generated from choline, betaine, and carnitine via gut microbial metabolism. The plasma level of TMAO is determined by several factors including diet, gut microbial flora, drug administration and liver flavin monooxygenase activity. In humans, recent clinical studies evidence a positive correlation between elevated plasma levels of TMAO and an increased risk for major adverse cardiovascular events.

View Article and Find Full Text PDF

Tau is a microtubule-associated protein highly expressed in neurons with a chief role in microtubule dynamics and axonal maintenance. Adrenomedullin gene (ADM) codifies for various peptides that exert broad range of actions in the body. Previous works in our groups have shown that increased ADM products are positively correlated to microtubule disruption and tau pathology in Alzheimer's disease brains.

View Article and Find Full Text PDF

Nimodipine may be of interest to treat behavioral alterations and memory deficits. However, its oral administration is hampered by a low bioavailability. The aim of this work was to develop pegylated nanoparticles as oral carriers of nimodipine and test their capability to both reverse the anxiety and protect against cognitive impairment of in stressed mice.

View Article and Find Full Text PDF

Obesity prevalence is increasing steadily throughout the world's population in most countries and in parallel the prevalence of metabolic disorders including cardiovascular diseases and type 2 diabetes is also rising, but less is reported about excessive adiposity relationship with poorer cognitive performance, cognitive decline and dementia. Some human clinical studies have evidenced that obesity is related to the risk of the development of mild cognitive impairment, in the form of short-term memory and executive function deficits, as well as dementia and Alzheimer's disease. The precise mechanisms that underlie the connections between obesity and the risk of cognitive impairment are still largely unknown but potential avenues of further research include insulin resistance, the gut-brain axis, and systemic mediators and central inflammation processes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionh783fdfbt7ep0rk6tpa5ahd47m4ea1ah): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once