Purpose: To propose a methodology for integrating the out-of-field and imaging doses to the in-field dose received by radiotherapy (RT) patients. In addition, the impact of considering the total dose in planning and radiation-induced second malignancies (RISM) risk assessment will be evaluated in several scenarios comprising photon and proton treatments.
Methods: The total dose is the voxel-wise sum of the doses from the different radiation sources (accounting for the radiobiological effectiveness) produced during the whole RT chain.
Background: Superficial targets require the use of the lowest energies within the available energy range in proton pencil-beam scanning (PBS) technique. However, the lower efficiency of the energy selection system at these energies and the requirement of a greater number of layers may represent disadvantages for this approach. The alternative is to use a range shifter (RS) at nozzle exit.
View Article and Find Full Text PDFOut-of-field patient doses in proton therapy are dominated by neutrons. Currently, they are not taken into account by treatment planning systems. There is an increasing need to include out-of-field doses in the dose calculation, especially when treating children, pregnant patients, and patients with implants.
View Article and Find Full Text PDFSince 2010, EURADOS Working Group 9 (Radiation Dosimetry in Radiotherapy) has been involved in the investigation of secondary and scattered radiation doses in X-ray and proton therapy, especially in the case of pediatric patients. The main goal of this paper is to analyze and compare out-of-field neutron and non-neutron organ doses inside 5- and 10-year-old pediatric anthropomorphic phantoms for the treatment of a 5-cm-diameter brain tumor. Proton irradiations were carried out at the Cyclotron Centre Bronowice in IFJ PAN Krakow Poland using a pencil beam scanning technique (PBS) at a gantry with a dedicated scanning nozzle (IBA Proton Therapy System, Proteus 235).
View Article and Find Full Text PDFProton therapy has the potential to provide survival and tumor control outcomes comparable and frequently superior to photon therapy. This has led to a significant concern in the medical physics community on the risk for the induction of second cancers in all patients and especially in younger patients, as they are considered more radiosensitive than adults and have an even longer expected lifetime after treatment. Thus, our purpose is to present an overview of the research carried out on the evaluation of out-of-field doses linked to second cancer induction and the prediction of this risk.
View Article and Find Full Text PDFThe aim of this work is to present a reproducible methodology for the evaluation of total equivalent doses in organs during proton therapy facilities. The methodology is based on measuring the dose equivalent in representative locations inside an anthropomorphic phantom where photon and neutron dosimeters were inserted. The Monte Carlo simulation was needed for obtaining neutron energy distribution inside the phantom.
View Article and Find Full Text PDFBackground And Purpose: The objective of this work is to evaluate the risk of carcinogenesis of low dose ionizing radiation therapy (LDRT), for treatment of immune-related pneumonia following COVID-19 infection, through the estimation of effective dose and the lifetime attributable risk of cancer (LAR).
Material And Methods: LDRT treatment was planned in male and female computational phantoms. Equivalent doses in organs were estimated using both treatment planning system calculations and a peripheral dose model (based on ionization chamber measurements).
There is a growing interest in the use of flattening filter free (FFF) beams due to the shorter treatment times. The reduction of head scatter suggests a better radiation protection to radiotherapy patients, considering the expected decrease in peripheral surface dose (PSD). In this work, PSD of flattened (FF) and FFF-photon beams was compared.
View Article and Find Full Text PDFPurpose: Biological treatment plan evaluation does not currently consider second cancer induction from peripheral doses associated to photon radiotherapy. The aim is to propose a methodology to characterize the therapeutic window by means of an integral radiobiological approach, which considers not only Tumour Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) but also Secondary Cancer Probability (SCP).
Methods: Uncomplicated and Cancer-Free Control Probability (UCFCP) function has been proposed assuming a statistically uncorrelated response for tumour and normal tissues.