Protein-stabilized gold nanoclusters (AuNCs) are fascinating nanostructures with exciting properties owing to their ultra-small sizes and functional shell. However, their applications under extreme conditions are still complicated, waiting for programmable solutions. Therefore, the design of a multi-functional protein stabilizer for specific purposes gains attention to improve the stability and functionality of AuNCs.
View Article and Find Full Text PDFThe tumor suppressor protein (Fhit) is known to be associated with genomic instability and apoptosis. The tumor-suppressive function of Fhit depends on the interaction with the alarmone diadenosine triphosphate (ApA), a noncanonical nucleotide whose concentration increases upon cellular stress. How the Fhit-ApA complex exerts its signaling function is unknown.
View Article and Find Full Text PDFAs one of the most prevalent post-translational modifications in eukaryotic cells, ubiquitylation plays vital roles in many cellular processes, such as protein degradation, DNA metabolism, and cell differentiation. Substrate proteins can be tagged by distinct types of polymeric ubiquitin (Ub) chains, which determine the eventual fate of the modified protein. A facile, click chemistry based approach for the efficient generation of linkage-defined Ub chains, including Ub dimers, was recently established.
View Article and Find Full Text PDF