Publications by authors named "Maite Lacuesta"

Introduction: Drought is one of the biggest problems for crop production and also affects the survival and persistence of soil rhizobia, which limits the establishment of efficient symbiosis and endangers the productivity of legumes, the main source of plant protein worldwide.

Aim: Since the biodiversity can be altered by several factors including abiotic stresses or cultural practices, the objective of this research was to evaluate the effect of water availability, plant genotype and agricultural management on the presence, nodulation capacity and genotypic diversity of rhizobia.

Method: A field experiment was conducted with twelve common bean genotypes under irrigation and rain-fed conditions, both in conventional and organic management.

View Article and Find Full Text PDF

Drought is the most detrimental abiotic stress in agriculture, limiting crop growth and yield and, currently, its risk is increasing due to climate change. Thereby, ensuring food security will be one of the greatest challenges of the agriculture in the nearest future, accordingly it is essential to look for sustainable strategies to cope the negative impact of drought on crops. Inoculation of pulses with biostimulants such as rhizobium strains with high nitrogen fixation efficiency and drought-tolerance, has emerged as a promising and sustainable production strategy.

View Article and Find Full Text PDF

Many species of are important pathogens that cause plant diseases and postharvest rots. They lead to significant economic losses in agriculture and affect human and animal health due to their capacity to produce mycotoxins. Therefore, it is necessary to study the factors that can result in an increase in .

View Article and Find Full Text PDF

Viticulture is highly dependent on phytochemicals to maintain good vineyard health. However, to reduce their accumulation in the environment, green regulations are driving the development of eco-friendly strategies. In this respect, seaweeds have proven to be one of the marine resources with the highest potential as plant protective agents, representing an environmentally-friendly alternative approach for sustainable wine production.

View Article and Find Full Text PDF

Soybean ( L.) future response to elevated [CO] has been shown to differ when inoculated with strains isolated at ambient or elevated [CO]. Plants, inoculated with three strains isolated at different [CO], were grown in chambers at current and elevated [CO] (400 vs.

View Article and Find Full Text PDF

The response of plant species to external factors depends partly on the interaction with the environment and with the other species that coexist in the same ecosystem. Several studies have investigated the main traits that determine the competitive capacity of plant species, and although the relevance of the traits is not clear, traits both from belowground and aboveground have been observed. In this paper, we grew Trifolium pratense and Agrostis capillaris in intra- and interspecific competition, analyzing the photosynthetic metabolism and nitrogen uptake, among other variables.

View Article and Find Full Text PDF

Nitrogen is one of the main factors that affect plant growth and development. However, high nitrogen concentrations can inhibit both shoot and root growth, even though the processes involved in this inhibition are still unknown. The aim of this work was to identify the metabolic alterations that induce the inhibition of root growth caused by high nitrate supply, when the whole plant growth is also reduced.

View Article and Find Full Text PDF

The present study was focused on lettuce, a widely consumed leafy vegetable for the large number of healthy phenolic compounds. Two differently-pigmented lettuce cultivars, i.e.

View Article and Find Full Text PDF

Climate change can have major consequences for grassland communities since the different species of the community utilize different mechanisms for adaptation to drought and elevated CO levels. In addition, contradictory data exist when the combined effects of elevated CO and drought are analyzed because the soil water content is not usually similar between CO concentrations. Thus, the objectives of this work have been to examine the effect of water stress on plant water relations in two grassland species (Trifolium pratense and Agrostis capillaris), analyzing the possible differences between the two species when soil water content is equal in all treatments, and to elucidate if development under elevated CO increases drought tolerance and if so, which are the underlying mechanisms.

View Article and Find Full Text PDF

Nitrogen (N) is an important regulator of photosynthetic carbon (C) flow in plants, and an adequate balance between N and C metabolism is needed for correct plant development. However, an excessive N supply can alter this balance and cause changes in specific organic compounds associated with primary and secondary metabolism, including plant growth regulators. In previous work, we observed that high nitrate supply (15 mM) to maize plants led to a decrease in leaf expansion and overall biomass production, when compared with low nitrate supply (5 mM).

View Article and Find Full Text PDF

Nitrogen (N) is an essential macronutrient that limits agricultural productivity, and both low and high N supply have been suggested to alter plant growth. The overall aim of this work is to study the impact of nitrate (NO3(-)) in maize yield and the possible causes that induce this alteration. High NO3(-) doses did not increase the yield of maize grown neither in the field nor under controlled conditions.

View Article and Find Full Text PDF

Somatic embryogenesis is a powerful alternative to conventional mass propagation of Quercus suber L. However, poor quality and incomplete maturation of somatic embryos restrict any application. Given that epigenetic and hormonal control govern many developmental stages, including maturation of zygotic embryos, global DNA methylation and abscisic acid (ABA) were analyzed during development and maturation of cork oak somatic embryos.

View Article and Find Full Text PDF

The future environment may be altered by high concentrations of salt in the soil and elevated [CO(2)] in the atmosphere. These have opposite effects on photosynthesis. Generally, salt stress inhibits photosynthesis by stomatal and non-stomatal mechanisms; in contrast, elevated [CO(2)] stimulates photosynthesis by increasing CO(2) availability in the Rubisco carboxylating site and by reducing photorespiration.

View Article and Find Full Text PDF

Future environmental conditions will include elevated concentrations of salt in the soil and an elevated concentration of CO(2) in the atmosphere. Because these environmental changes will likely affect reactive oxygen species (ROS) formation and cellular antioxidant metabolism in opposite ways, we analyzed changes in cellular H(2)O(2) and non-enzymatic antioxidant metabolite [lipoic acid (LA), ascorbate (ASA), glutathione (GSH)] content induced by salt stress (0, 80, 160 or 240 mM NaCl) under ambient (350 micromol mol(-1)) or elevated (700 micromol mol(-1)) CO(2) concentrations in two barley cultivars (Hordeum vulgare L.) that differ in sensitivity to salinity (cv.

View Article and Find Full Text PDF

Future environmental conditions will include elevated concentrations of salt in the soils and elevated concentrations of CO(2) in the atmosphere. Soil salinization inhibits crop growth due to osmotic and ionic stress. However, plants possess salt tolerance mechanisms, such as osmotic and elastic adjustment, to maintain water status.

View Article and Find Full Text PDF

Changes in antioxidant metabolism because of the effect of salinity stress (0, 80, 160 or 240 mM NaCl) on protective enzyme activities under ambient (350 micromol mol(-1)) and elevated (700 micromol mol(-1)) CO(2) concentrations were investigated in two barley cultivars (Hordeum vulgare L., cvs Alpha and Iranis). Electrolyte leakage, peroxidation, antioxidant enzyme activities [superoxide dismutase (SOD), EC 1.

View Article and Find Full Text PDF