Background: We used an in vitro tooth development model to investigate the effects of overactivation of the Wnt/β-catenin pathway during odontogenesis by bromoindirubin oxime reagent (BIO), a specific inhibitor of GSK-3 activity.
Results: Overactivating the Wnt/β-catenin pathway at tooth initiation upregulated and ectopically expressed the epithelial markers Sonic Hedgehog (Shh), Epiprofin (Epfn), and Fibroblast growth factor8 (Fgf8), which are involved in the delimitation of odontogenic fields in the oral ectoderm. This result indicated an ectopic extension of the odontogenic potential.
Dental pulp stem cells, or DPSC, are neural crest-derived cells with an outstanding capacity to differentiate along multiple cell lineages of interest for cell therapy. In particular, highly efficient osteo/dentinogenic differentiation of DPSC can be achieved using simple in vitro protocols, making these cells a very attractive and promising tool for the future treatment of dental and periodontal diseases. Among craniomaxillofacial organs, the tooth and salivary gland are two such cases in which complete regeneration by tissue engineering using DPSC appears to be possible, as research over the last decade has made substantial progress in experimental models of partial or total regeneration of both organs, by cell recombination technology.
View Article and Find Full Text PDFBackground Information: Delta-like proteins 1 and 2 (DLK1, 2) are NOTCH receptor ligands containing epidermal growth factor-like repeats, which regulate NOTCH signalling. We investigated the role of DLK and the NOTCH pathway in the morphogenesis of the submandibular salivary glands (SMGs), using in vitro organotypic cultures.
Results: DLK1 and 2 were present in all stages of SMG morphogenesis, where DLK1 inhibited both NOTCH activity and SMG branching.
Several stem cell sources persist in the adult human body, which opens the doors to both allogeneic and autologous cell therapies. Tooth tissues have proven to be a surprisingly rich and accessible source of neural crest-derived ectomesenchymal stem cells (EMSCs), which may be employed to repair disease-affected oral tissues in advanced regenerative dentistry. Additionally, one area of medicine that demands intensive research on new sources of stem cells is nervous system regeneration, since this constitutes a therapeutic hope for patients affected by highly invalidating conditions such as spinal cord injury, stroke, or neurodegenerative diseases.
View Article and Find Full Text PDFEpiprofin/Specificity Protein 6 (Epfn) is a Krüppel-like family (KLF) transcription factor that is critically involved in tooth morphogenesis and dental cell differentiation. However, its mechanism of action is still not fully understood. We have employed both loss-of-function and gain-of-function approaches to address the role of Epfn in the formation of cell junctions in dental cells and in the regulation of junction-associated signal transduction pathways.
View Article and Find Full Text PDFThe procurement of induced pluripotent stem cells, or IPS cells, from adult differentiated animal cells has the potential to revolutionize future medicine, where reprogrammed IPS cells may be used to repair disease-affected tissues on demand. The potential of IPS cell technology is tremendous, but it will be essential to improve the methodologies for IPS cell generation and to precisely evaluate each clone and subclone of IPS cells for their safety and efficacy. Additionally, the current state of knowledge on IPS cells advises that research on their regenerative properties is carried out in appropriate tissue and organ systems that permit a safe assessment of the long-term behavior of these reprogrammed cells.
View Article and Find Full Text PDFBackground Information: Previous studies have indicated that over-activation of the wingless interaction site (Wnt)/β-catenin signalling pathway has important implications for tooth development, at the level of cell differentiation and morphology, as well as for the production of supernumerary teeth. Here, we provide evidence for a crucial role of this signalling pathway during the stage of tooth morphogenesis. We have developed an in vitro model consisting of 14.
View Article and Find Full Text PDFOdontogenesis is governed by a complex network of intercellular signaling events between the dental epithelium and mesenchyme. This network leads to the progressive determination of tooth shape, and to the differentiation of these tissues into enamel-producing ameloblasts and dentin-producing odontoblasts respectively. Among the main signaling pathways involved in the regulation of tooth development, Bone Morphogenetic Protein (BMP), Sonic hedgehog (Shh) and Wingless-type MMTV integration site (Wnt) pathways have been reported to play significant roles.
View Article and Find Full Text PDF