This work describes how to utilize the electrochemical technique to determine labetalol hydrochloride (Lab) in pure form and combined pharmaceutical formulation for quality control purposes. Four membrane sensors were developed using two plasticizers, dioctyl phthalate with 2-hydroxypropyl-?-cyclodextrin and ammonium reineckate (RNC) for sensors 1a and 2a, and tributyl phthalate with 2-hydroxypropyl-?-cyclodextrin and ammonium reineckate for sensors 1b and 2b as ionophores in polyvinyl chloride (PVC) matrix. Fast response and stable Nernstian slopes of 59.
View Article and Find Full Text PDFNovel miniaturized polyvinyl chloride (PVC) membrane sensors in all-solid state graphite and platinum wire supports were developed, electrochemically evaluated and used for the assay of rivastigmine hydrogen tartrate drug (RIV). The RIV sensors are based on the formation of an ion-association complex between the drug cation and tetrakis(4-chlorophenyl)borate (TpClPB) anionic exchanger as electroactive material dispersed in a PVC matrix. Linear responses of 10(-2) - 10(-5) M and 10(-2) - 10(-4) M with cationic slopes of 56.
View Article and Find Full Text PDFTwo stability-indicating methods, namely densitometric TLC and derivative spectrophotometry for the determination of the fluoroquinolone antibacterials lomefloxacin (Lfx), moxifloxacin (Mfx), and sparfloxacin (Sfx) in the presence of their acid degrades are described. Acid degradation was adopted and the main decarboxylated product separated by TLC. Degradation products were identified confirming a previously mentioned degradation scheme.
View Article and Find Full Text PDF