Publications by authors named "Maisara Abdul-Kadir"

New compound, namely ()-1-[4-(trifluoromethyl)benzylidene]thiosemicarbazide was successfully synthesized using thiosemicarbazide with 4-(trifluoromethyl)-benzaldehyde in ethanol solution. The data presented in this articles is related to our research articles entitled "Crystal Structure of ()-1-[4-(Trifluoromethyl)benzylidene]thiosemicarbazide" (Osman et al., 2017) [1].

View Article and Find Full Text PDF

Discrete dinuclear metallo-macrocyclic complexes have been prepared from the flexible amide ligand N-6-[(3-pyridylmethylamino)carbonyl]pyridine-2-carboxylic acid (L1-CH(3)), and its more rigid analogue, N-6-[(3-pyridylamino)carbonyl]pyridine-2-carboxylic acid (L3-CH(3)). With ligands L1-CH(3) and L3-CH(3), discrete dinuclear metallo-macrocyclic complexes with the generic formula [Cu(2)(L1-CH(3))(2)(X)(2)(Y)(2)] (7, X = NO(3); 8, X = Cl, Y = H(2)O; 9, X = ClO(4), Y = CH(3)OH) and [Cu(2)(L3-CH(3))(2)(X)(2)(Y)(2)] (10, X = NO(3), Y = H(2)O; 11, X = ClO(4), Y = CH(3)OH) are obtained. For complexes 7-9, containing the more flexible link L1-CH(3), these complexes are cleft-shaped and hinged at the methylene spacer, which allows the cleft to widen and contract to accommodate different packing modes in the solid-state.

View Article and Find Full Text PDF

A series of metallo-macrocyclic based coordination polymers has been prepared from flexible amide ligands N-6-[(3-pyridylmethylamino)carbonyl]-pyridine-2-carboxylic acid (L1-CH(3)) and N-6-[(4-pyridylmethylamino)carbonyl]-pyridine-2-carboxylic acid (L2-CH(3)). In all but one case, self-assembled dinuclear metallo-macrocyclic units form the basis of the polymeric structures, whereby discrete metal centres, and dinuclear or trinuclear clusters, are linked by the self-assembled macrocycles to give 1D and 2D coordination polymers. In one instance, a 1D coordination polymer is formed in a reaction carried out under ambient conditions; when the same reaction is conducted under solvothermal conditions a 2D structure is formed.

View Article and Find Full Text PDF