Noradrenaline (NE), the main neurotransmitter released by sympathetic nerve terminals, is known to modulate the immune response. However, the role of the sympathetic nervous system (SNS) on the development of autoimmune diseases is still unclear. Here, we report that the SNS limits the generation of pathogenic T cells and disease development in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS).
View Article and Find Full Text PDFDespite accumulating evidence indicating that neurotransmitters released by the sympathetic nervous system can modulate the activity of innate immune cells, we still know very little about how norepinephrine impacts signaling pathways in dendritic cells (DC) and the consequence of that in DC-driven T cell differentiation. In this article, we demonstrate that β2-adrenergic receptor (β2AR) activation in LPS-stimulated DC does not impair their ability to promote T cell proliferation; however, it diminishes IL-12p70 secretion, leading to a shift in the IL-12p70/IL-23 ratio. Although β2AR stimulation in DC induces protein kinase A-dependent cAMP-responsive element-binding protein phosphorylation, the effect of changing the profile of cytokines produced upon LPS challenge occurs in a protein kinase A-independent manner and, rather, is associated with inhibition of the NF-κB and AP-1 signaling pathways.
View Article and Find Full Text PDFWe have previously shown that regulatory T (Treg) cells that accumulate in the airways of allergic mice upregulate CC-chemokine receptor 4 (CCR4) expression. These Treg cells suppressed in vitro Th2 cell proliferation but not type 2 cytokine production. In the current study, using a well-established murine model of allergic lung disease or oral tolerance, we evaluated the in vivo activity of Treg cells in allergic airway inflammation with special focus on CCR4 function.
View Article and Find Full Text PDFFoxp3(+)CD25(+)CD4(+) regulatory T cells are vital for peripheral tolerance and control of tissue inflammation. In this study, we characterized the phenotype and monitored the migration and activity of regulatory T cells present in the airways of allergic or tolerant mice after allergen challenge. To induce lung allergic inflammation, mice were sensitized twice with ovalbumin/aluminum hydroxide gel and challenged twice with intranasal ovalbumin.
View Article and Find Full Text PDF