Publications by authors named "Mairead Heavey"

Bioadhesive materials and patches are promising alternatives to surgical sutures and staples. However, many existing bioadhesives do not meet the functional requirements of current surgical procedures and interventions. Here, we present a translational patch material that exhibits instant adhesion to tissues (2.

View Article and Find Full Text PDF

Probiotic and engineered microbe-based therapeutics are an emerging class of pharmaceutical agents. They represent a promising strategy for treating various chronic and inflammatory conditions by interacting with the host immune system and/or delivering therapeutic molecules. Here, we engineered a targeted probiotic yeast platform wherein Saccharomyces boulardii is designed to bind to abundant extracellular matrix proteins found within inflammatory lesions of the gastrointestinal tract through tunable antibody surface display.

View Article and Find Full Text PDF

Live biotherapeutic products (LBPs) are an emerging class of therapeutics comprised of engineered living organisms such as bacteria or yeast. Bioprinting with living materials has now become possible using modern three-dimensional (3D) printing strategies. While there has been significant progress in bioprinting cells, bioprinting LBPs, specifically yeast, remains in its infancy and has not been optimized.

View Article and Find Full Text PDF

Genetically engineered microbes that secrete therapeutics, sense and respond to external environments, and/or target specific sites in the gut fall under an emergent class of therapeutics, called live biotherapeutic products (LBPs). As live organisms that require symbiotic host interactions, LBPs offer unique therapeutic opportunities, but also face distinct challenges in the gut microenvironment. In this review, we describe recent approaches (often demonstrated using traditional probiotic microorganisms) to discover LBP chassis and genetic parts utilizing omics-based methods and highlight LBP delivery strategies, with a focus on addressing physiological challenges that LBPs encounter after oral administration.

View Article and Find Full Text PDF

Cell therapies have emerged as a promising therapeutic modality with the potential to treat and even cure a diverse array of diseases. Cell therapies offer unique clinical and therapeutic advantages over conventional small molecules and the growing number of biologics. Particularly, living cells can simultaneously and dynamically perform complex biological functions in ways that conventional drugs cannot; cell therapies have expanded the spectrum of available therapeutic options to include key cellular functions and processes.

View Article and Find Full Text PDF

A new modality in microbe-mediated drug delivery has recently emerged wherein genetically engineered microbes are used to locally deliver recombinant therapeutic proteins to the gastrointestinal tract. These engineered microbes are often referred to as live biotherapeutic products (LBPs). Despite advanced genetic engineering and recombinant protein expression approaches, little is known on how to control the spatiotemporal dynamics of LBPs and their secreted therapeutics within the gastrointestinal tract.

View Article and Find Full Text PDF

A new modality in antibody engineering has emerged in which the antigen affinity is designed to be pH dependent (PHD). In particular, combining high affinity binding at neutral pH with low affinity binding at acidic pH leads to a novel antibody that can more effectively neutralize the target antigen while avoiding antibody-mediated antigen accumulation. Here, we studied how the in vivo pharmacokinetics of the superantigen, Staphylococcal enterotoxin B (SEB), is affected by an engineered antibody with pH-dependent binding.

View Article and Find Full Text PDF