Publications by authors named "Maira Sauveur-Michel"

Activating mutations in GNAQ/GNA11 occur in over 90% of uveal melanomas (UMs), the most lethal melanoma subtype; however, targeting these oncogenes has proven challenging and inhibiting their downstream effectors show limited clinical efficacy. Here, we performed genome-scale CRISPR screens along with computational analyses of cancer dependency and gene expression datasets to identify the inositol-metabolizing phosphatase INPP5A as a selective dependency in GNAQ/11-mutant UM cells in vitro and in vivo. Mutant cells intrinsically produce high levels of the second messenger inositol 1,4,5 trisphosphate (IP3) that accumulate upon suppression of INPP5A, resulting in hyperactivation of IP3-receptor signaling, increased cytosolic calcium and p53-dependent apoptosis.

View Article and Find Full Text PDF

Unlabelled: Although KRASG12C inhibitors show clinical activity in patients with KRAS G12C mutated non-small cell lung cancer (NSCLC) and other solid tumor malignancies, response is limited by multiple mechanisms of resistance. The KRASG12C inhibitor JDQ443 shows enhanced preclinical antitumor activity combined with the SHP2 inhibitor TNO155, and the combination is currently under clinical evaluation. To identify rational combination strategies that could help overcome or prevent some types of resistance, we evaluated the duration of tumor responses to JDQ443 ± TNO155, alone or combined with the PI3Kα inhibitor alpelisib and/or the cyclin-dependent kinase 4/6 inhibitor ribociclib, in xenograft models derived from a KRASG12C-mutant NSCLC line and investigated the genetic mechanisms associated with loss of response to combined KRASG12C/SHP2 inhibition.

View Article and Find Full Text PDF

Unlabelled: Covalent inhibitors of KRASG12C have shown antitumor activity against advanced/metastatic KRASG12C-mutated cancers, though resistance emerges and additional strategies are needed to improve outcomes. JDQ443 is a structurally unique covalent inhibitor of GDP-bound KRASG12C that forms novel interactions with the switch II pocket. JDQ443 potently inhibits KRASG12C-driven cellular signaling and demonstrates selective antiproliferative activity in KRASG12C-mutated cell lines, including those with G12C/H95 double mutations.

View Article and Find Full Text PDF
Article Synopsis
  • * Syrosingopine, an antihypertensive drug, can inhibit MCT1 and MCT4, especially MCT4, preventing the efflux of these products and causing an increase in intracellular lactate levels.
  • * Combining syrosingopine with metformin, which affects NAD+ regeneration for glycolysis, leads to ATP depletion and cell death in cancer cells, suggesting a new potential cancer treatment approach.
View Article and Find Full Text PDF

In vitro metabolic identification studies with a PI3K-α inhibitor lead molecule 1 identified a single predominant site of oxidative metabolism to be occurring within a tert.butyl moiety. Modification of the tert.

View Article and Find Full Text PDF

The introduction of MAPK pathway inhibitors paved the road for significant advancements in the treatment of BRAF-mutant (BRAF(MUT)) melanoma. However, even BRAF/MEK inhibitor combination therapy has failed to offer a curative treatment option, most likely because these pathways constitute a codependent signaling network. Concomitant PTEN loss of function (PTEN(LOF)) occurs in approximately 40% of BRAF(MUT) melanomas.

View Article and Find Full Text PDF

Somatic PIK3CA mutations are frequently found in solid tumors, raising the hypothesis that selective inhibition of PI3Kα may have robust efficacy in PIK3CA-mutant cancers while sparing patients the side-effects associated with broader inhibition of the class I phosphoinositide 3-kinase (PI3K) family. Here, we report the biologic properties of the 2-aminothiazole derivative NVP-BYL719, a selective inhibitor of PI3Kα and its most common oncogenic mutant forms. The compound selectivity combined with excellent drug-like properties translates to dose- and time-dependent inhibition of PI3Kα signaling in vivo, resulting in robust therapeutic efficacy and tolerability in PIK3CA-dependent tumors.

View Article and Find Full Text PDF

The genes encoding RAS family members are frequently mutated in juvenile myelomonocytic leukemia (JMML) and acute myeloid leukemia (AML). RAS proteins are difficult to target pharmacologically; therefore, targeting the downstream PI3K and RAF/MEK/ERK pathways represents a promising approach to treat RAS-addicted tumors. The p110α isoform of PI3K (encoded by Pik3ca) is an essential effector of oncogenic KRAS in murine lung tumors, but it is unknown whether p110α contributes to leukemia.

View Article and Find Full Text PDF

Signals from the tumor suppressors PTEN and LKB1 converge on mTOR to negatively regulate its function in cancer cells. Notably, both of these suppressors are attenuated in a significant fraction of human endometrial tumors. In this study, we generated a genetic mouse model of endometrial cancer driven by concomitant loss of these suppressors to gain pathophysiological insight into this disease.

View Article and Find Full Text PDF

PTEN hamartoma tumor syndrome (PHTS) comprises a collection of genetic disorders associated with germline mutations in the tumor suppressor gene PTEN. Therapeutic options and preventative measures for PHTS are limited. Using both genetically engineered mouse models and pharmacological PI3K isoform-selective inhibitors, we found that the roles of PI3K isoforms are spatially distinct in the skin: While p110α is responsible for the sustained survival of suprabasal cells of the epidermis in the absence of PTEN, p110β is important for the hyperproliferation of basal cells in PHTS.

View Article and Find Full Text PDF

Background And Purpose: Despite appropriate radiotherapy, high-risk prostate cancer patients often experience local relapse and progression to metastatic disease. Radioresistance may be due to tumor-hypoxia but also due to the PTEN mutation/deletion present in 70% prostate cancers. We investigated whether the novel PI3K/mTOR inhibitor BEZ235 might sensitize prostate cancer cells to radiation and reduce hypoxia-induced radioresistance.

View Article and Find Full Text PDF
Article Synopsis
  • Prostate cancer presents a unique opportunity for chemoprevention, but current trials using 5α-reductase inhibitors have shown mixed results, leading to challenges in understanding their effectiveness.
  • In a mouse model of high-grade prostatic intraepithelial neoplasia (HG-PIN), it was found that androgen deprivation methods, like surgical castration, may actually worsen disease progression to invasive castration-resistant prostate cancer (CRPC).
  • Targeting the PI3K signaling pathway either genetically or with drugs showed promise in reversing negative effects of PTEN loss and effectively treating CRPC, suggesting that patients with PTEN-deficient tumors could benefit more from these targeted therapies rather than traditional antiandrogen treatments.*
View Article and Find Full Text PDF

Activating K-RAS mutations occur at a frequency of 90% in pancreatic cancer, and to date no therapies exist targeting this oncogene. K-RAS signals via downstream effector pathways such as the MAPK and the PI3K signaling pathways, and much effort has been focused on developing drugs targeting components of these pathways. To better understand the requirements for K-RAS and its downstream signaling pathways MAPK and PI3K in pancreatic tumor maintenance, we established an inducible K-RAS knock down system that allowed us to ablate K-RAS in established tumors.

View Article and Find Full Text PDF

The pan-phosphoinositide 3-kinase (PI3K) inhibitor BKM120 was found, at high concentrations, to cause cell death in various cellular systems, irrespective of their level of PI3K addiction. Transcriptional and biochemical profiling studies were used to identify the origin of these unexpected and apparently PI3K-independent effects. At 5- to 10-fold, the concentration needed to half-maximally inhibit PI3K signaling.

View Article and Find Full Text PDF

Background: The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is activated in tumor cells and promotes tumor cell survival after radiation-induced DNA damage. Because the pathway may not be completely inhibited after blockade of PI3K itself, due to feedback through mammalian target of rapamycin (mTOR), more effective inhibition might be expected by targeting both PI3K and mTOR inhibition.

Materials And Methods: We investigated the effect of two dual PI3K/mTOR (both mTORC1 and mTORC2) inhibitors, NVP-BEZ235 and NVP-BGT226, on SQ20B laryngeal and FaDu hypopharyngeal cancer cells characterised by EGFR overexpression, on T24 bladder tumor cell lines with H-Ras mutation and on endothelial cells.

View Article and Find Full Text PDF

Introduction: We assessed expression of p85 and p110α PI3K subunits in non-small cell lung cancer (NSCLC) specimens and the association with mTOR expression, and studied effects of targeting the PI3K/AKT/mTOR pathway in NSCLC cell lines.

Methods: Using Automated Quantitative Analysis we quantified expression of PI3K subunits in two cohorts of 190 and 168 NSCLC specimens and correlated it with mTOR expression. We studied effects of two PI3K inhibitors, LY294002 and NVP-BKM120, alone and in combination with rapamycin in 6 NSCLC cell lines.

View Article and Find Full Text PDF

Following the discovery of NVP-BEZ235, our first dual pan-PI3K/mTOR clinical compound, we sought to identify additional phosphoinositide 3-kinase (PI3K) inhibitors from different chemical classes with a different selectivity profile. The key to achieve these objectives was to couple a structure-based design approach with intensive pharmacologic evaluation of selected compounds during the medicinal chemistry optimization process. Here, we report on the biologic characterization of the 2-morpholino pyrimidine derivative pan-PI3K inhibitor NVP-BKM120.

View Article and Find Full Text PDF

The aberrant vascular architecture of solid tumors results in hypoxia that limits the efficacy of radiotherapy. Vascular normalization using antiangiogenic agents has been proposed as a means to improve radiation therapy by enhancing tumor oxygenation, but only short-lived effects for this strategy have been reported so far. Here, we show that NVP-BEZ235, a dual inhibitor of phosphoinositide-3-kinase (PI3K) and mTOR, can improve tumor oxygenation and vascular structure over a prolonged period that achieves the aim of effective vascular normalization.

View Article and Find Full Text PDF

Purpose: The aim of this study was to show preclinical efficacy and clinical development potential of NVP-BKM120, a selective pan class I phosphatidylinositol-3 kinase (PI3K) inhibitor in human glioblastoma (GBM) cells in vitro and in vivo.

Experimental Design: The effect of NVP-BKM120 on cellular growth was assessed by CellTiter-Blue assay. Flow cytometric analyses were carried out to measure the cell-cycle, apoptosis, and mitotic index.

View Article and Find Full Text PDF

Most estrogen receptor α (ER)-positive breast cancers initially respond to antiestrogens, but many eventually become estrogen-independent and recur. We identified an estrogen-independent role for ER and the CDK4/Rb/E2F transcriptional axis in the hormone-independent growth of breast cancer cells. ER downregulation with fulvestrant or small interfering RNA (siRNA) inhibited estrogen-independent growth.

View Article and Find Full Text PDF
Article Synopsis
  • GPR4 is a G protein-coupled receptor that responds to acidic pH and is expressed in endothelial cells, correlating with endothelial marker genes.
  • GPR4-deficient mice are viable but exhibit a significantly reduced angiogenic response to VEGF without affecting their response to bFGF, indicating a specific role for GPR4 in VEGF-mediated angiogenesis.
  • In tumor models, GPR4 deficiency leads to reduced tumor growth, lower VEGFR2 levels in endothelial cells, and changes in tumor cell proliferation and blood vessel characteristics.
View Article and Find Full Text PDF

DNA-dependent protein kinase (DNA-PK) plays a pivotal role in the repair of DNA double-strand breaks (DSB) and is centrally involved in regulating cellular radiosensitivity. Here, we identify DNA-PK as a key therapeutic target for augmenting accelerated senescence in irradiated human cancer cells. We find that BEZ235, a novel inhibitor of DNA-PK and phosphoinositide 3-kinase (PI3K)/mTOR, abrogates radiation-induced DSB repair resulting in cellular radiosensitization and growth delay of irradiated tumor xenografts.

View Article and Find Full Text PDF

Phosphoinositide-3-kinases (PI3Ks) are important oncology targets due to the deregulation of this signaling pathway in a wide variety of human cancers. Herein we describe the structure guided optimization of a series of 2-morpholino, 4-substituted, 6-heterocyclic pyrimidines where the pharmacokinetic properties were improved by modulating the electronics of the 6-position heterocycle, and the overall druglike properties were fine-tuned further by modification of the 4-position substituent. The resulting 2,4-bismorpholino 6-heterocyclic pyrimidines are potent class I PI3K inhibitors showing mechanism modulation in PI3K dependent cell lines and in vivo efficacy in tumor xenograft models with PI3K pathway deregulation (A2780 ovarian and U87MG glioma).

View Article and Find Full Text PDF

Purpose: The cancer stem cell hypothesis predicts that standard prostate cancer monotherapy eliminates bulk tumor cells but not a tumor-initiating cell population, eventually leading to relapse. Many studies have sought to determine the underlying differences between bulk tumor and cancer stem cells.

Experimental Design: Our previous data suggest that the PTEN/PI3K/AKT pathway is critical for the in vitro maintenance of CD133(+)/CD44(+) prostate cancer progenitors and, consequently, that targeting PI3K signaling may be beneficial in treatment of prostate cancer.

View Article and Find Full Text PDF