Background: Development of efficient methods for production of renewable fuels from lignocellulosic biomass is necessary to maximize yields and reduce operating costs. One of the main challenges to industrial application of the lignocellulosic conversion process is the high costs of cellulolytic enzymes. Recycling of enzymes may present a potential solution to alleviate this problem.
View Article and Find Full Text PDFAn intracellular β-glucosidase from Debaryomyceshansenii UFV-1 was produced in an YP medium with cellobiose as the carbon source. This enzyme was purified, characterised and presented a Mr of 65.15kDa.
View Article and Find Full Text PDFEnzymatic hydrolysis is an important but expensive step in the production of ethanol from biomass. Thus, the production of efficient enzymatic cocktails is of great interest for this biotechnological application. The production of endoglucanase and xylanase activites from F.
View Article and Find Full Text PDFProduction of ethanol with two corn endophytic fungi, Fusarium verticillioides and Acremonium zeae, was studied. The yield of ethanol from glucose, xylose and a mixture of both sugars were 0.47, 0.
View Article and Find Full Text PDFBioresour Technol
September 2013
Blending of the enzyme extracts produced by different fungi can result in favorable synergetic enhancement of the enzyme blend with regards to the main cellulase activities, as well as the inclusion of accessory enzymes that may not be as abundant in enzyme extracts produced by predominantly cellulase producing fungi. The Chrysoporthe cubensis:Penicillium pinophilum 50:50 (v/v) blend produced herein presented good synergy, especially for FPase and endoglucanase activities which were 76% and 48% greater than theoretical, respectively. This enzyme blend was applied to sugarcane bagasse previously submitted to a simple alkali pretreatment.
View Article and Find Full Text PDFA novel multienzyme complex, E1C, and a free endoglucanase, E2 (GH5), from Fusarium verticillioides were purified. The E1C contained two endoglucanases (GH6 and GH10), one cellobiohydrolase (GH7) and one xylanase (GH10). Maximum activity was observed at 80 °C for both enzymes and they were thermostable at 50 and 60 °C.
View Article and Find Full Text PDFThe plant pathogenic fungus Chrysoporthe cubensis was cultivated under solid state employing different substrates and the highest endoglucanase (33.84Ug(-1)), FPase (2.52Ug(-1)), β-glucosidase (21.
View Article and Find Full Text PDFThe aim of this work was to evaluate the biochemical features of the white-rot fungi Pycnoporus sanguineus cellulolytic complex and its utilization to sugarcane bagasse hydrolysis. When cultivated under submerged fermentation using corn cobs as carbon source, P. sanguineus produced high FPase, endoglucanase, β-glucosidase, xylanase, mannanase, α-galactosidase, α-arabinofuranosidase, and polygalacturonase activities.
View Article and Find Full Text PDFThe aim of this work was to have cellulase activity and hemicellulase activity screenings of endophyte Acremonium species (Acremonium zeae EA0802 and Acremonium sp. EA0810). Both fungi were cultivated in submerged culture (SC) containing L -arabinose, D -xylose, oat spelt xylan, sugarcane bagasse, or corn straw as carbon source.
View Article and Find Full Text PDFPartially purified alpha-Galactosidase from Penicillium griseoroseum was immobilized onto modified silica using glutaraldehyde linkages. The effective activity of immobilized enzyme was 33%. Free and immobilized alpha-galactosidase showed optimal activity at 45 degrees C and pH values of 5 and 4, respectively.
View Article and Find Full Text PDF