Marine plankton capable of photosynthesis and predation ("mixoplankton") comprise up to 50% of protist plankton and include many harmful species. However, marine environmental management policies, including the European Union Marine Strategy Framework Directive (MSFD) and the USEPA, assume a strict dichotomy between autotrophic phytoplankton and heterotrophic zooplankton. Mixoplankton often differ significantly from these two categories in their response to environmental pressures and affect the marine environment in ways we are only beginning to understand.
View Article and Find Full Text PDFMeltwater runoff from glaciers carries particles, so-called glacial flour that may affect planktonic organisms and the functioning of marine ecosystems. Protist microplankton is at the base of marine food webs and thus plays an important role in sustaining important ecosystem services. To assess the effect of glacial flour on photoautotrophic, heterotrophic and mixotrophic microplankton, the spatial distribution of these trophic groups was studied in four Greenlandic fjords during summer.
View Article and Find Full Text PDFMany marine ciliate species retain functional chloroplasts from their photosynthetic prey. In some species, the functionality of the acquired plastids is connected to the simultaneous retention of prey nuclei. To date, this has never been documented in plastidic species.
View Article and Find Full Text PDFMany species of the ciliate genus can acquire functional chloroplasts from a wide range of algal prey and are thus classified as generalist non-constitutive mixotrophs. Little, however, is known about the influence of irradiance and prey availability on their ability to exploit the photosynthetic potential of the chloroplasts, and how this may explain their spatial and temporal distribution in nature. In this study, inorganic carbon uptake, growth, and ingestion rates were measured for cf.
View Article and Find Full Text PDFLittle is known on the antioxidant activity modulation in microalgae, even less in diatoms. Antioxidant molecule concentrations and their modulation in microalgae has received little attention and the interconnection between light, photosynthesis, photoprotection, and antioxidant network in microalgae is still unclear. To fill this gap, we selected light as external forcing to drive physiological regulation and acclimation in the costal diatom .
View Article and Find Full Text PDF