Publications by authors named "Mainville L"

Hidradenitis suppurativa is a chronic inflammatory skin disease that usually presents in young adults with painful abscesses in intertriginous areas. We present a case of severe hidradenitis suppurativa (Hidradenitis Suppurativa Investigator Global Assessment (HS-IGA) = 5; Hurley stage III) investigated by cardiology and respirology specialists for dyspnea. The patient's symptoms required right-sided cardiac catheterization via the right femoral vein in the inguinal area.

View Article and Find Full Text PDF

Background: Reactive granulomatous dermatitis (RGD) is a rare and misunderstood skin disorder. It includes interstitial granulomatous dermatitis and palisaded neutrophilic and granulomatous dermatitis: 2 entities of the same spectrum. Multiple associations are described with RGD in the literature, including autoimmune diseases, malignancy, and drugs.

View Article and Find Full Text PDF

Background: Oral nicotinamide is recommended in individuals with a field of cancerization or with ≥1 previous cutaneous squamous cell carcinoma (cSCC).

Objective: To evaluate the effect of nicotinamide in prevention of skin cancers.

Methods: We conducted a systematic review and meta-analysis of randomized controlled trials to evaluate the effect of nicotinamide.

View Article and Find Full Text PDF

The cholinergic neurons in the pontomesencephalic tegmentum have been shown to discharge in association with and promote cortical activation during active or attentive waking and paradoxical or rapid eye movement sleep. However, GABA neurons lie intermingled with the cholinergic neurons and may contribute to or oppose this activity and role. Here we investigated and the properties, activities, and role of GABA neurons within the laterodorsal tegmental and sublaterodorsal tegmental nuclei (LDT/SubLDT) using male and female transgenic mice expressing channelrhodopsin-()- in vesicular GABA transporter ()-expressing neurons.

View Article and Find Full Text PDF

Acetylcholine (ACh) neurons in the pontomesencephalic tegmentum (PMT) are thought to play an important role in promoting cortical activation with waking (W) and paradoxical sleep [PS; or rapid eye movement (REM)], but have yet to be proven to do so by selective stimulation and simultaneous recording of identified ACh neurons. Here, we employed optogenetics combined with juxtacellular recording and labeling of neurons in transgenic (TG) mice expressing ChR2 in choline acetyltransferase (ChAT)-synthesizing neurons. We established then in anesthetized (A) and unanesthetized (UA), head-fixed mice that photostimulation elicited a spike with short latency in neurons which could be identified by immunohistochemical staining as ACh neurons within the laterodorsal (LDT)/sublaterodorsal (SubLDT) and pedunculopontine tegmental (PPT) nuclei.

View Article and Find Full Text PDF

Impaired wound healing is a severe clinical challenge and research into finding effective wound healing strategies is underway as there is no ideal treatment. Gelatinous material from the umbilical cord called Wharton's jelly is a valuable source of mesenchymal stem cells which have been shown to aid wound healing. While the cellular component of Wharton's jelly has been the subject of extensive research during the last few years, little is known about the de-cellularized jelly material of the umbilical cord.

View Article and Find Full Text PDF

Neuronal activity is regulated in a homeostatic manner through changes in inhibitory GABA and excitatory glutamate (Glu) AMPA (A) receptors (GluARs). Using immunofluorescent staining, we examined whether calcium/calmodulin-dependent protein kinase IIα (CaMKIIα)-labeled (+) excitatory neurons in the barrel cortex undergo such homeostatic regulation following enforced waking with associated cortical activation during the day when mice normally sleep the majority of the time. Sleep deprived mice were prevented from falling asleep by unilateral whisker stimulation and sleep recovery (SR) mice allowed to sleep freely following deprivation.

View Article and Find Full Text PDF

Unlabelled: Orexin (Orx) neurons are known to be involved in the promotion and maintenance of waking because they discharge in association with cortical activation and muscle tone during waking and because, in their absence, waking with muscle tone cannot be maintained and narcolepsy with cataplexy ensues. Whether Orx neurons discharge during waking in association with particular conditions, notably with appetitive versus aversive stimuli or positive versus negative emotions, is debated and considered important in understanding their role in supporting particular waking behaviors. Here, we used the technique of juxtacellular recording and labeling in head-fixed rats to characterize the discharge of Orx neurons during the performance of an associative discrimination task with auditory cues for appetitive versus aversive outcomes.

View Article and Find Full Text PDF

Distributed within the laterodorsal tegmental and pedunculopontine tegmental nuclei (LDT and PPT), cholinergic neurons in the pontomesencephalic tegmentum have long been thought to play a critical role in stimulating cortical activation during waking (W) and paradoxical sleep (PS, also called REM sleep), yet also in promoting PS with muscle atonia. However, the discharge profile and thus precise roles of the cholinergic neurons have remained uncertain because they lie intermingled with GABAergic and glutamatergic neurons, which might also assume these roles. By applying juxtacellular recording and labeling in naturally sleeping-waking, head-fixed rats, we investigated the discharge profiles of histochemically identified cholinergic, GABAergic, and glutamatergic neurons in the LDT, SubLDT, and adjoining medial part of the PPT (MPPT) in relation to sleep-wake states, cortical activity, and muscle tone.

View Article and Find Full Text PDF

Orexin (Orx or hypocretin) is critically important for maintaining wakefulness, since in its absence, narcolepsy with cataplexy occurs. In this role, Orx-containing neurons can exert their influence upon multiple targets through the brain by release of Orx but possibly also by release of other neurotransmitters. Indeed, evidence was previously presented to suggest that Orx terminals could utilize glutamate (Glu) in addition to Orx as a neurotransmitter.

View Article and Find Full Text PDF

Acetylcholine (ACh) plays an important role in the promotion of paradoxical sleep (PS) with muscle atonia through the muscarinic-2 receptor (M2R) in the mesopontine tegmentum. Conversely, orexin (Orx or hypocretin) appears to be critical for the maintenance of waking with muscle tone through the orexin-2 (or hypocretin-B) receptor (Orx2R), which is lacking in dogs having narcolepsy with cataplexy. In dual-immunostained material viewed under fluorescence microscopy, we examined the presence and distribution of M2R or Orx2R labeling on all neuronal nuclei (NeuN)-stained neurons or on glutamic acid decarboxylase (GAD)-stained neurons through the mesopontine tegmentum.

View Article and Find Full Text PDF

Background: The basal forebrain (BF) cholinergic neurons play an important role in cortical activation and arousal and are active in association with cortical activation of waking and inactive in association with cortical slow wave activity of sleep. In view of findings that GABAA receptors (Rs) and inhibitory transmission undergo dynamic changes as a function of prior activity, we investigated whether the GABAARs on cholinergic cells might undergo such changes as a function of their prior activity during waking vs. sleep.

View Article and Find Full Text PDF

The basal forebrain (BF) plays an important role in modulating cortical activity and influencing attention, learning and memory. These activities are fulfilled importantly yet not entirely by cholinergic neurons. Noncholinergic neurons also contribute and comprise GABAergic neurons and other possibly glutamatergic neurons.

View Article and Find Full Text PDF

Though overlapping in distribution within the posterior hypothalamus, neurons containing orexin (Orx) and melanin concentrating hormone (MCH) may play different roles in the regulation of behavioural state. In the present study in rats, we tested whether they express c-Fos differently after total sleep deprivation (SD) vs. sleep recovery (SR).

View Article and Find Full Text PDF

The basal forebrain (BF) contains cholinergic neurons that stimulate cortical activation during waking. In addition, both the BF and adjacent preoptic area (POA) contain neurons that promote sleep. We examined c-Fos expression in cholinergic and GABAergic neurons in the BF and POA to determine whether they are differentially active following sleep deprivation versus recovery and whether the GABAergic neurons are active during sleep.

View Article and Find Full Text PDF

The basal forebrain (BF) plays an important role in modulating cortical activity and facilitating processes of attention, learning, and memory. This role is subserved by cholinergic neurons but also requires the participation of other noncholinergic neurons. Noncholinergic neurons include gamma-amino butyric acidergic (GABAergic) neurons, some of which project in parallel with the cholinergic cells to the cerebral cortex, others of which project caudally or locally.

View Article and Find Full Text PDF

Evidence suggests that dopaminergic neurons of the ventral mesencephalic tegmentum (VMT) could be important for paradoxical sleep (PS). Here, we examined whether dopamine (DA) and adjacent gamma-aminobutyric acid (GABA)-synthesizing neurons are active in association with PS recovery as compared to PS deprivation or control conditions in different groups of rats by using c-Fos expression as a reflection of neural activity, combined with dual immunostaining for tyrosine hydroxylase (TH) or glutamic acid decarboxylase (GAD). Numbers of TH+/c-Fos+ neurons in the substantia nigra (SN) were not significantly different across groups, whereas those in the ventral tegmental area (VTA) were significantly different and greatest in PS recovery.

View Article and Find Full Text PDF

Basal forebrain neurons play important parts in processes of cortical activation and memory that have been attributed to the cortically projecting, cholinergic neurons. Yet, non-cholinergic neurons also project to the cerebral cortex and also appear to participate in processes of cortical modulation and plasticity. GABAergic neurons compose a portion of the cortically projecting cell group, but do not fully account for the non-cholinergic cell contingent.

View Article and Find Full Text PDF

The brainstem contains the neural systems that are necessary for the generation of the state of paradoxical sleep (PS) and accompanying muscle atonia. Important for its initiation are the pontomesencephalic cholinergic neurons that project into the pontomedullary reticular formation and that we have recently shown increase c-Fos expression as a reflection of neural activity in association with PS rebound after deprivation in rats (Maloney et al. , 1999).

View Article and Find Full Text PDF

Multiple lines of evidence indicate that neurons within the pontomesencephalic tegmentum are critically involved in the generation of paradoxical sleep (PS). From single-unit recording studies, evidence suggests that unidentified but "possibly" cholinergic tegmental neurons discharge at higher rates during PS than during slow wave sleep or even waking and would thus play an active role, whereas "presumed" monoaminergic neurons cease firing during PS and would thus play a permissive role in PS generation. In the present study performed on rats, c-Fos immunostaining was used as a reflection of neuronal activity and combined with immunostaining for choline acetyltransferase (ChAT), serotonin (Ser), tyrosine hydroxylase (TH), or glutamic acid decarboxylase (GAD) for immunohistochemical identification of active neurons during PS recovery ( approximately 28% of recording time) as compared with PS deprivation (0%) and PS control (approximately 15%) conditions.

View Article and Find Full Text PDF

The extrathalamic relay from the brainstem reticular formation to the cerebral cortex in the basal forebrain has been thought to be constituted predominantly, if not exclusively, by cholinergic neurons. In contrast, the septohippocampal projection has been shown to contain an important contingent of gamma-aminobutyric acid (GABA)ergic neurons. In the present study, we investigated whether GABAergic neurons also contribute to the projection from the basal forebrain to neocortical regions, including the mesocortex (limbic) and the isocortex in the rat.

View Article and Find Full Text PDF

The present study was undertaken to determine the frequency and distribution of GABAergic neurons within the rat pontomesencephalic tegmentum and the relationship of GABAergic cells to cholinergic and other tegmental neurons projecting to the hypothalamus. In sections immunostained for glutamic acid decarboxylase (GAD), large numbers of small GAD-positive neurons (approximately 50,000 cells) were distributed through the tegmentum and associated with a high density of GAD-positive varicosities surrounding both GAD-positive and GAD-negative cells. Through the reticular formation, ventral tegmentum, raphe nuclei, and dorsal tegmentum, GAD-positive cells were codistributed with larger cells, which included neurons immunostained on adjacent sections for glutamate, tyrosine hydroxylase (TH), serotonin, or choline acetyltransferase (ChAT).

View Article and Find Full Text PDF

As part of a larger study concerning the role of neurons in the medial medullary reticular formation in sleep-wake states, the distribution and projections of cholinergic, GABAergic and serotonergic neurons were studied within the lower brainstem of the cat. Cells were plotted with the aid of an image analysis system through the medullary reticular formation and raphe in adjacent sections immunostained for choline acetyltransferase, glutamic acid decarboxylase and serotonin. Immunostained fibres and varicosities were examined and quantified by microdensitometry in regions of the medulla, pons and upper spinal cord in normal and quisqualate-injected animals to assess the loss of local and distant projections following cytotoxic destruction of neurons in the medial medullary reticular formation.

View Article and Find Full Text PDF