Schizophrenia is a heterogeneous disease generally considered to result from a combination of heritable and environmental factors. Although its pathophysiology has not been fully determined, biological studies support the involvement of several possible components including altered DNA methylation, abnormal glutamatergic transmission, altered mitochondrial function, folate deficiency and high maternal homocysteine levels. Although these factors have been explored separately, they all involve one-carbon (C1) metabolism.
View Article and Find Full Text PDFThe Hox clusters play a crucial role in body patterning during animal development. They encode both Hox transcription factor and micro-RNA genes that are activated in a precise temporal and spatial sequence that follows their chromosomal order. These remarkable collinear properties confer functional unit status for Hox clusters.
View Article and Find Full Text PDFThe World Academy of Young Scientists argue that double blind peer-review will generate a better perception of fairness and equality in global scientific funding and publishing
View Article and Find Full Text PDFIota-toxin from Clostridium perfringens type E is a binary toxin consisting of two independent proteins, an enzymatic Ia and binding Ib component. Ia catalyses ADP-ribosylation of actin monomers, thus disrupting the actin cytoskeleton. In this report, we show that Ia plus Ib applied apically or basolaterally induce a rapid decrease in the transepithelial resistance (TER) of CaCo-2 cell monolayers and disorganization of actin filaments as well as the tight and adherens junctions.
View Article and Find Full Text PDFOutgrowth of the dendrites and the axon is the basis of the establishment of the neuronal shape, and it requires addition of new membrane to both growing processes. It is not yet clear whether one or two exocytotic pathways are responsible for the respective outgrowth of axons and dendrites. We have previously shown that tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) defines a novel network of tubulovesicular structures present both at the leading edge of elongating dendrites and axons of immature hippocampal neurons developing in primary culture and that TI-VAMP is an essential protein for neurite outgrowth in PC12 cells.
View Article and Find Full Text PDFTo identify genes regulated by homeoprotein transcription factors in postnatal neurons, the DNA-binding domain (homeodomain) of Engrailed homeoprotein was internalized into rat cerebellum neurons. The internalized homeodomain (EnHD) acts as a competitive inhibitor of Engrailed and of several homeoproteins (Mainguy et al., 2000).
View Article and Find Full Text PDFAn important issue in developmental biology is the identification of homeoprotein target genes. We have developed a strategy based on the internalization and nuclear addressing of exogenous homeodomains, using an engrailed homeodomain (EnHD) to screen an embryonic stem (ES) cell gene trap library. Eight integrated gene trap loci responded to EnHD.
View Article and Find Full Text PDFIn a recent gene-trap screen, we identified the gene coding for Epidermal Bullous Pemphigoid Antigen 1 (BPAG1) as a putative transcriptional target of Engrailed and of other homeoproteins with a glutamine in position 50 of their homeodomain. We now show that the nuclear addressing of the homeodomains of Engrailed (EnHD) and Antennapedia (AntpHD) upregulates BPAG1e transcription in immortalized human keratinocytes (GMA24FIA) expressing En1. This upregulation is not observed with AntpHD-Q50A, a variant of AntpHD in which a single mutation abolishes its high-affinity binding to target DNA, thus strongly suggesting that BPAG1e upregulation homeodomains reflects their specific recognition of homeoprotein-binding sites in the BPAG1e locus.
View Article and Find Full Text PDF