Episodic memory relies on the entorhinal cortex (EC), a crucial hub connecting the hippocampus and sensory processing regions. This study investigates the role of the lateral EC (LEC) in episodic-like memory in mice. Here, we employ the object-place-context-recognition task (OPCRT), a behavioral test used to study episodic-like memory in rodents.
View Article and Find Full Text PDFGraphene is a promising biomaterial. However, its dispersion in aqueous medium is challenging. This study aimed to modify graphene nanoparticles with L-dopa to improve the properties of experimental dental adhesives.
View Article and Find Full Text PDFDravet syndrome is a severe epileptic encephalopathy, characterized by drug-resistant epilepsy, severe cognitive and behavioural deficits, with increased risk of sudden unexpected death (SUDEP). It is caused by haploinsufficiency of SCN1A gene encoding for the α-subunit of the voltage-gated sodium channel Nav1.1.
View Article and Find Full Text PDFBackground: Deep brain stimulation (DBS) is an established therapeutic option in advanced Parkinson's disease (PD). Literature data and recent guidelines remain inconclusive about the best choice as a target between the subthalamic nucleus (STN) and the globus pallidus internus (GPi).
Materials And Methods: We retrospectively reviewed the clinical efficacy outcomes of 48 DBS-implanted patients (33 STN-DBS and 15 GPi-DBS) at a short- (<1 year from the surgery) and long-term (2-5 years) follow-up.
Gibberellic acid (GA) is a natural hormone present in some plants used in agricultural formulations as a growth regulator. Currently, its production on an industrial scale is performed by submerged fermentation using the fungus Gibberella fujikuroi, which is associated with low yields, leaving the purification stages with high costs. An alternative is solid-state fermentation (SSF), which makes it possible to obtain higher concentrations of product using low-cost substrates, such as agroindustrial by-products.
View Article and Find Full Text PDFMechanical stimulation modulates neural development and neuronal activity. In a previous study, magnetic "nano-pulling" is proposed as a tool to generate active forces. By loading neural cells with magnetic nanoparticles (MNPs), a precise force vector is remotely generated through static magnetic fields.
View Article and Find Full Text PDFThe binding of nerve growth factor (NGF) to the tropomyosin-related kinase A (TrkA) and p75 receptors activates a large variety of pathways regulating critical processes as diverse as proliferation, differentiation, membrane potential, synaptic plasticity, and pain. To ascertain the details of TrkA-p75 interaction and cooperation, a plethora of experiments, mostly based on receptor overexpression or downregulation, have been performed. Among the heterogeneous cellular systems used for studying NGF signaling, the PC12 pheochromocytoma-derived cell line is a widely used model.
View Article and Find Full Text PDFPrimary familial brain calcification (PFBC), formerly known as Fahr's disease, is a rare neurodegenerative disease characterized by bilateral progressive calcification of the microvessels of the basal ganglia and other cerebral and cerebellar structures. PFBC is thought to be due to an altered function of the Neurovascular Unit (NVU), where abnormal calcium-phosphorus metabolism, functional and microanatomical alterations of pericytes and mitochondrial alterations cause a dysfunction of the blood-brain barrier (BBB) and the generation of an osteogenic environment with surrounding astrocyte activation and progressive neurodegeneration. Seven causative genes have been discovered so far, of which four with dominant (SLC20A2, PDGFB, PDGFRB, XPR1) and three with recessive inheritance (MYORG, JAM2, CMPK2).
View Article and Find Full Text PDFA functional nerve growth factor NGF-Tropomyosin Receptor kinase A (TrkA) system is an essential requisite for the generation and maintenance of long-lasting thermal and mechanical hyperalgesia in adult mammals. Indeed, mutations in the gene encoding for TrkA are responsible for a rare condition, named Hereditary Sensory and Autonomic Neuropathy type IV (HSAN IV), characterized by the loss of response to noxious stimuli, anhidrosis and cognitive impairment. However, to date, there is no available mouse model to properly understand how the NGF-TrkA system can lead to pathological phenotypes that are distinctive of HSAN IV.
View Article and Find Full Text PDFBackground: Antiphospholipid syndrome (APS) is a complex acquired autoimmune disease with a wide clinical spectrum. Chorea is a rare neurological manifestation of APS.
Cases: We report two elderly patients with APS-related chorea in whom functional imaging (18F-FDG positron emission tomography, FDG-PET) supported the diagnosis and compare our findings with existing literature.
A deterioration in cognitive performance accompanies brain aging, even in the absence of neurodegenerative pathologies. However, the rate of cognitive decline can be slowed down by enhanced cognitive and sensorimotor stimulation protocols, such as environmental enrichment (EE). Understanding how EE exerts its beneficial effects on the aged brain pathophysiology can help in identifying new therapeutic targets.
View Article and Find Full Text PDFCancer children experience long periods of hospitalization, which are associated with limited performance in several developmental domains and participation restrictions in age appropriate occupations. Fine motor abilities represent building blocks in performing daily life skills and have been found to be closely connected with later academic success. Moreover, medical and psychological sequelae for cancer inpatients may result in diminished daily activities functioning, poor perceived health related quality of life (HRQOL), and increase the likelihood of long-term impairments.
View Article and Find Full Text PDFDespite recent progresses in robotic rehabilitation technologies, their efficacy for post-stroke motor recovery is still limited. Such limitations might stem from the insufficient enhancement of plasticity mechanisms, crucial for functional recovery. Here, we designed a clinically relevant strategy that combines robotic rehabilitation with chemogenetic stimulation of serotonin release to boost plasticity.
View Article and Find Full Text PDFTailoring the surface properties of materials for biomedical applications is important to avoid clinical complications. Forming thin layers of amphiphilic molecules with apolar regions that facilitate attractive intermolecular interactions, can be a suitable and versatile approach to achieve hydrophobic surface modification and provide functional antibacterial properties. Aiming to correlate layer structure and properties starting from film formation, octadecylphosphonic acid (ODPA) and dimethyloctadecyl (3-trimethoxysilylpropyl) ammonium chloride (DMOAP) layers were adsorbed onto smooth titania surfaces.
View Article and Find Full Text PDFIn humans and experimental animals, the administration of ciliary neurotrophic factor (CNTF) reduces food intake and body weight. To gain further insights into the mechanism(s) underlying its satiety effect, we: (i) evaluated the CNTF-dependent activation of the Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) pathway in mouse models where neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) neurons can be identified by green fluorescent protein (GFP); and (ii) assessed whether CNTF promotes leptin signaling in hypothalamic feeding centers. Immunohistochemical experiments enabled us to establish that intraperitoneal injection of mouse recombinant CNTF activated the JAK2-STAT3 pathway in a substantial proportion of arcuate nucleus (ARC) NPY neurons (18.
View Article and Find Full Text PDFStretch-growth has been defined as a process that extends axons via the application of mechanical forces. In the present article, we used a protocol based on magnetic nanoparticles (NPs) for labeling the entire axon tract of hippocampal neurons, and an external magnetic field gradient to generate a dragging force. We found that the application of forces below 10 pN induces growth at a rate of 0.
View Article and Find Full Text PDFSeveral works reported increased differentiation of neuronal cells grown on graphene; however, the molecular mechanism driving axon elongation on this material has remained elusive. Here, we study the axonal transport of nerve growth factor (NGF), the neurotrophin supporting development of peripheral neurons, as a key player in the time course of axonal elongation of dorsal root ganglion neurons on graphene. We find that graphene drastically reduces the number of retrogradely transported NGF vesicles in favor of a stalled population in the first 2 days of culture, in which the boost of axon elongation is observed.
View Article and Find Full Text PDFNerve growth factor (NGF) is a key mediator of nociception, acting during the development and differentiation of dorsal root ganglion (DRG) neurons, and on adult DRG neuron sensitization to painful stimuli. NGF also has central actions in the brain, where it regulates the phenotypic maintenance of cholinergic neurons. The physiological function of NGF as a pain mediator is altered in patients with Hereditary Sensory and Autonomic Neuropathy type V (HSAN V), caused by the 661C>T transition in the gene, resulting in the R100W missense mutation in mature NGF.
View Article and Find Full Text PDF