Publications by authors named "Maimoona Qindeel"

In recent years, gene therapy based on miRNA has been employed as a potential growing technique for treating various co-morbidities. Direct administration of miRNA is unrealistic due to their lower specificity, stability, and decreased penetration through the cellular membrane. Suitable delivery vectors must be required to deliver miRNA efficiently.

View Article and Find Full Text PDF

The present study aimed to fabricate and evaluate the therapeutic efficacy of pH-responsive Ibuprofen (IB) nanoparticles (NPs) loaded transdermal hydrogel against rheumatoid arthritis (RA). The IB loaded Eudragit® L 100 (EL 100) nanoparticles were formulated through a modified nanoprecipitation technique and optimized using central composite design software. The optimized NPs were loaded into Carbopol® 934-based hydrogel by solvent evaporation method and were analyzed for physicochemical characteristics.

View Article and Find Full Text PDF

Emerging concepts in nanotechnology have gained particular attention for their clinical translation of immunotherapies of cancer, autoimmune and infectious diseases. Several nanoconstructs have been engineered with unique structural, physicochemical, and functional features as robust alternatives for conventional chemotherapies. Traditional cancer therapies like chemotherapy, radiotherapy, and ultimately surgery are the most widely practiced in biomedical settings.

View Article and Find Full Text PDF

Objective: Biodegradable polymers are extensively used due to their efficient safety profiles. The aim of the current study was to fabricate, evaluate, and characterize biodegradable, biocompatible fluconazole (FLZ) loaded chitosan (CHS) chondroitin sulfate (CS) nanoparticles (NPs) for topical delivery. Polymers utilized in the formulation not only served as a carrier system but also aided in fighting with complex etiology of the disease due to their innate antifungal activities.

View Article and Find Full Text PDF

This study aimed to develop and optimise a Curcumin-loaded SLNs (C-SLNs) patch through a new approach for transdermal delivery. C-SLNs were optimised through the response surface central composite design using the modified injection method. Optimised C-SLNs were loaded into a polyvinyl alcohol-based patch through the backing membrane method.

View Article and Find Full Text PDF

The diagnosis and treatment of urinary tract infections (UTIs) remain challenging due to the lack of convenient assessment techniques and to the resistance to conventional antimicrobial therapy, showing the need for novel approaches to address such problems. In this regard, nanotechnology has a strong potential for both the diagnosis and therapy of UTIs via controlled delivery of antimicrobials upon stable, effective and sustained drug release. On one side, nanoscience allowed the production of various nanomaterial-based evaluation tools as precise, effective, and rapid procedures for the identification of UTIs.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease with a prevalence rate of up to 1% and is significantly considered a common worldwide public health concern. Commercially, several traditional formulations are available to treat RA to some extent. However, these synthetic compounds exert toxicity and considerable side effects even at lower therapeutic concentrations.

View Article and Find Full Text PDF

At present, several drug molecules have been used for the treatment of rheumatoid arthritis (RA). However, the utilization of these compounds through the oral and parenteral route is limited due to low bioavailability, rapid metabolism, poor absorption, first-pass effect, and serious adverse effects. A transdermal delivery system is an appealing option in this scenario, as it possesses the proficiency to overcome drawbacks associated with the oral and parenteral route.

View Article and Find Full Text PDF

The measurement of biological processes at a molecular and cellular level serves as a basis for molecular imaging. As compared with traditional imaging approaches, molecular imaging functions to probe molecular anomalies that are the basis of a disease rather than the evaluation of end results of these molecular changes. Proteases play central role in tumor invasion, angiogenesis and metastasis thus can be exploited as a target for imaging probes in early diagnosis and treatment of tumors.

View Article and Find Full Text PDF

Methotrexate (MTX) is the first line agent for therapy against rheumatoid arthritis (RA); however, orally its efficacy is hampered by poor solubility, less permeability, short plasma half-life, and reduced bioavailability. Meanwhile, parenteral formulations are associated with severe adverse effects. In an attempt to improve the efficacy of MTX, we synthesized polycaprolactone-polyethylene glycol-polycaprolactone (PCL-PEG-PCL) triblock copolymer by a ring-opening copolymerization reaction and used it as a carrier for the fabrication of MTX-loaded nanomicelles.

View Article and Find Full Text PDF

To formulate and evaluate a pH-responsive nanoparticle (NP)-based patch for efficient transdermal delivery of flurbiprofen against rheumatoid arthritis. Nanoprecipitation technique was used for preparation of NPs and central composite design was employed for optimization purposes. Optimized NPs were loaded into the transdermal patch by the solvent evaporation method.

View Article and Find Full Text PDF

Nontargeted delivery systems present nonspecific delivery, low transfection efficiency and high toxicity. Ligand-conjugated chitosan (CS) nanocarriers have emerged as an outstanding option for achieving active delivery specifically and preferentially to the target sites by exploiting receptors mediated endocytosis. Mannosylated CS nanocarriers have brought tremendous breakthrough in gene therapy and have proven to be an excellent choice for treatment of infectious and inflammatory diseases.

View Article and Find Full Text PDF

Objective: Difference of pH that exists between the skin surface and blood circulation can be exploited for transdermal delivery of drug molecules by loading drug into pH-sensitive polymer. Eudragit S100 (ES100), a pH-sensitive polymer having dissolution profile above pH 7.4, is used in oral, ocular, vaginal and topical delivery of drug molecules.

View Article and Find Full Text PDF