Publications by authors named "Maillot B"

Precisely controlled micropatterning with organic moieties is a promising route for designing smart surfaces, enabling the development of microsensors and actuators with optimal usage of reactants. Such applications require fine control over the surface modification process, which in turn demands detailed knowledge about the surface modification process. As complex surface kinetics often emerge as a result of even slight modifications of the grafting entity, non-invasive, sensitive and precise closed loop control strategies are highly desirable.

View Article and Find Full Text PDF

Background: In the era of innovating minimal invasive surgery, laparoscopic right posterior sectionectomy (RLPS) is considered a technically challenging procedure for its deeply anatomic location. Performed by experienced surgeons, it has been shown to be a safe and feasible procedure. The purpose of this video was to show the technique of a RLPS.

View Article and Find Full Text PDF

Therapeutic targeting of the transforming growth factor beta (TGFβ) pathway in cancer represents a clinical challenge since TGFβ exhibits either tumor suppressive or tumor promoting properties, depending on the tumor stage. Thus, treatment with galunisertib, a small molecule inhibitor of TGFβ receptor type 1, demonstrated clinical benefits only in subsets of patients. Due to the functional duality of TGFβ in cancer, one can hypothesize that inhibiting this pathway could result in beneficial or adverse effects depending on tumor subtypes.

View Article and Find Full Text PDF

High resolution and quantitative surface modification through photografting is a highly desirable strategy towards the preparation of smart surfaces, enabling chemical functions to be precisely located onto specific regions of inert surfaces. Although promising, the mechanisms leading to direct (without the use of any additive) photoactivation of diazonium salts using visible wavelengths are poorly understood, precluding the generalization of popular diazonium-based electrografting strategies into high resolution photografting ones. In this paper, we employ quantitative phase imaging as a nanometrology tool for evaluating the local grafting rate with diffraction-limited resolution and nanometric precision.

View Article and Find Full Text PDF

Triphosphate tunnel metalloenzymes (TTMs) are found in all biological kingdoms and have been characterized in microorganisms and animals. Members of the TTM family have divergent biological functions and act on a range of triphosphorylated substrates (RNA, thiamine triphosphate, and inorganic polyphosphate). TTMs in plants have received considerably less attention and are unique in that some homologs harbor additional domains including a P-loop kinase and transmembrane domain.

View Article and Find Full Text PDF

BACKGROUND Few series of cavoportal (CPA) or renoportal (RPA) anastomosis have been published and their survival rates have never been compared. The objective of this study was to evaluate perioperative and long-term outcomes of CPA and RPA in a nationwide multicentric series and to compare hemitranspositions (HT) to paired orthotopic liver transplantations (OLT). MATERIAL AND METHODS HT performed in France up to April 2019 were analyzed.

View Article and Find Full Text PDF

Pyruvate, the end product of glycolysis, plays a major role in cell metabolism. Produced in the cytosol, it is oxidized in the mitochondria where it fuels the citric acid cycle and boosts oxidative phosphorylation. Its sole entry point into mitochondria is through the recently identified mitochondrial pyruvate carrier (MPC).

View Article and Find Full Text PDF

The integration of the retroviral genome into the chromatin of the infected cell is catalysed by the integrase (IN)•viral DNA complex (intasome). This process requires functional association between the integration complex and the nucleosomes. Direct intasome/histone contacts have been reported to modulate the interaction between the integration complex and the target DNA (tDNA).

View Article and Find Full Text PDF

Purification of proteins containing disordered regions and participating in transient complexes is often challenging because of the small amounts available after purification, their heterogeneity, instability, and/or poor solubility. To circumvent these difficulties, we set up a methodology that enables the production of stable complexes in large amounts for structural and functional studies. In this chapter, we describe the methodology used to establish the best cell culture conditions and buffer compositions to optimize soluble protein production and their stabilization through protein complex formation.

View Article and Find Full Text PDF

Deep-sea mining of commercially valuable polymetallic nodule fields will generate a seabed sediment plume into the water column. Yet, the response of bacterioplankton communities, critical in regulating energy and matter fluxes in marine ecosystems, to such disturbances is unknown. Metacommunity theory, traditionally used in general ecology for macroorganisms, offers mechanistic understanding on the relative role of spatial differences compared with local environmental conditions (habitat filtering) for community assembly.

View Article and Find Full Text PDF

Marine bacteria regulate fluxes of matter and energy essential for pelagic and benthic organisms and may also be involved in the formation and maintenance of commercially valuable abyssal polymetallic nodules. Future mining of these nodule fields is predicted to have substantial effects on biodiversity and physicochemical conditions in mined areas. Yet, the identity and distributions of bacterial populations in deep-sea sediments and associated polymetallic nodules has received relatively little attention.

View Article and Find Full Text PDF

Concentrated seabed deposits of polymetallic nodules, which are rich in economically valuable metals (e.g., copper, nickel, cobalt, manganese), occur over vast areas of the abyssal Pacific Ocean floor.

View Article and Find Full Text PDF

Biological small-angle X-ray scattering (BioSAXS) is a powerful technique to determine the solution structure, particle size, shape and surface-to-volume ratio of macromolecules. However, a drawback is that the sample needs to be monodisperse. To ensure this, size-exclusion chromatography (SEC) has been implemented on many BioSAXS beamlines.

View Article and Find Full Text PDF

Purification of proteins that participate in large transient complexes is impeded by low amounts, heterogeneity, instability and poor solubility. To circumvent these difficulties we set up a methodology that enables the production of stable complexes for structural and functional studies. This procedure is benchmarked and applied to two challenging protein families: the human steroid nuclear receptors (SNR) and the HIV-1 pre-integration complex.

View Article and Find Full Text PDF

We consider the nonparametric estimation of the generalised regression function for continuous time processes with irregular paths when the regressor takes values in a semimetric space. We establish the mean-square convergence of our estimator with the same superoptimal rate as when the regressor is real valued.

View Article and Find Full Text PDF
Article Synopsis
  • The HIV-1 integrase (IN) protein facilitates the integration of viral cDNA into the human genome and relies on various cellular cofactors for this process.
  • Researchers created a stable complex that includes HIV-1 integrase, viral DNA, the cellular cofactor LEDGF/p75, and the INI1-IBD subunit to study their interactions and effects on viral integration.
  • Findings suggest that INI1-IBD stabilizes integrase in a way that reduces non-specific DNA interactions and integration errors, potentially leading to a new type of integrase inhibitor that could be beneficial for HIV treatment.
View Article and Find Full Text PDF