Mitochondrial dysfunction is putatively central to glioblastoma (GBM) pathophysiology but there has been no systematic analysis in GBM of the proteins which are integral to mitochondrial function. Alterations in proteins in mitochondrial enriched fractions from patients with GBM were defined with label-free liquid chromatography mass spectrometry. 256 mitochondrially-associated proteins were identified in mitochondrial enriched fractions and 117 of these mitochondrial proteins were markedly (fold-change ≥ 2) and significantly altered in GBM (p ≤ 0.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
May 2013
The most common cause of Pelizaeus-Merzbacher (PMD) is due to duplication of the PLP1 gene but it is unclear how increased gene dosage affects PLP turnover and causes dysmyelination. We have studied the dynamics of PLP/DM20 in a transgenic mouse model of PMD with increased gene dosage of the proteolipid protein gene (Plp1). The turnover of PLP/DM20 were investigated using an ex-vivo brain slice system and cultured oligodendrocytes.
View Article and Find Full Text PDFIt is widely thought that demyelination contributes to the degeneration of axons and, in combination with acute inflammatory injury, is responsible for progressive axonal loss and persistent clinical disability in inflammatory demyelinating disease. In this study we sought to characterize the relationship between demyelination, inflammation and axonal transport changes using a Plp1-transgenic mouse model of Pelizaeus-Merzbacher disease. In the optic pathway of this non-immune mediated model of demyelination, myelin loss progresses from the optic nerve head towards the brain, over a period of months.
View Article and Find Full Text PDFMost axons in the central nervous system (CNS) are surrounded by a multilayered myelin sheath that promotes fast, saltatory conduction of electrical impulses. By insulating the axon, myelin also shields the axoplasm from the extracellular milieu. In the CNS, oligodendrocytes provide support for the long-term maintenance of myelinated axons, independent of the myelin sheath.
View Article and Find Full Text PDFPLP1 and DM20, major myelin proteins, are generated by developmentally regulated alternative splicing. In the post-natal brain, PLP1 is the predominant product. Deletion of a splicing enhancer in PLP1 intron 3 causes a mild form of Pelizaeus-Merzbacher disease and reduces PLP1 specific splicing in vitro (Hobson, G.
View Article and Find Full Text PDFSmall-diameter myelinated CNS axons are preferentially affected in multiple sclerosis (MS) and in the hereditary spastic paraplegias (HSP), in which the distal axon degenerates. Mitochondrial dysfunction has been implicated in the pathogenesis of these and other disorders involving axonal degeneration. The aim of this study was to determine whether the frequency of axonal mitochondria changes along the length of small-diameter fibers and whether there is a preferential localization to the region of the node of Ranvier.
View Article and Find Full Text PDFDuplication of PLP1, an X-linked gene encoding the major myelin membrane protein of the human CNS, is the most frequent cause of Pelizaeus-Merzbacher disease (PMD). Transgenic mice with extra copies of the wild type Plp1 gene, a valid model of PMD, also develop a dysmyelinating phenotype dependant on gene dosage. In this study we have examined the effect of increasing Plp1 gene dosage on levels of PLP/DM20 and on other representative myelin proteins.
View Article and Find Full Text PDFIn vitro models of myelinating central nervous system axons have mainly been of two types, organotypic or dissociated. In organotypic cultures, the tissue fragment is thick and usually requires sectioning (physically or optically) before visual examination. In dissociated cultures, tissue is dispersed across the culture surface, making it difficult to measure the extent of myelinated fiber growth.
View Article and Find Full Text PDFOligodendrocytes are critical for the development of the plasma membrane and cytoskeleton of the axon. In this paper, we show that fast axonal transport is also dependent on the oligodendrocyte. Using a mouse model of hereditary spastic paraplegia type 2 due to a null mutation of the myelin Plp gene, we find a progressive impairment in fast retrograde and anterograde transport.
View Article and Find Full Text PDF