Fibrosis is a major cause of mortality worldwide, characterized by myofibroblast activation and excessive extracellular matrix deposition. Systemic sclerosis is a prototypic fibrotic disease in which CXCL4 is increased and strongly correlates with skin and lung fibrosis. Here we aim to elucidate the role of CXCL4 in fibrosis development.
View Article and Find Full Text PDFObjective: SSc is a complex disease characterized by vascular abnormalities and inflammation culminating in hypoxia and excessive fibrosis. Previously, we identified chemokine (C-X-C motif) ligand 4 (CXCL4) as a novel predictive biomarker in SSc. Although CXCL4 is well-studied, the mechanisms driving its production are unclear.
View Article and Find Full Text PDFAngiopoietin-2 (Ang-2), a ligand of the tyrosine kinase receptor Tie2, is essential for vascular development and blood vessel stability and is also involved in monocyte activation. Here, we examined the role of Ang-2 on monocyte activation in patients with systemic sclerosis (SSc). Ang-2 levels were measured in serum and skin of healthy controls (HCs) and SSc patients by ELISA and array profiling, respectively.
View Article and Find Full Text PDFObjective: Gout is the most common inflammatory arthritis worldwide, and patients experience a heavy burden of cardiovascular and metabolic diseases. The inflammation is caused by the deposition of monosodium urate (MSU) crystals in tissues, especially in the joints, triggering immune cells to mount an inflammatory reaction. Recently, it was shown that MSU crystals can induce mechanistic target of rapamycin (mTOR) signalling in monocytes encountering these crystals in vitro.
View Article and Find Full Text PDFBackground: Metformin, a widely prescribed blood glucose normalizing antidiabetic drug, is now beginning to receive increasing attention due to its anti-inflammatory properties.
Objective: To provide a critical and comprehensive review of the available literature describing the effects of metformin on the immune system and on auto-inflammatory diseases.
Results: Based on the available scientific literature, metformin suppresses immune responses mainly through its direct effect on the cellular functions of various immune cell types by induction of AMPK and subsequent inhibition of mTORC1, and by inhibition of mitochondrial ROS production.
Recently, we reported that human neutrophils produce biologically active amounts of IL-6 when incubated with agonists activating TLR8, a receptor recognizing viral single strand RNA. In this study, we demonstrate that IFNα, a cytokine that modulates the early innate immune responses toward viral and bacterial infections, potently enhances the production of IL-6 in neutrophils stimulated with R848, a TLR8 agonist. We also show that such an effect is not caused by an IFNα-dependent induction of TLR7 and its consequent co-activation with TLR8 in response to R848, but, rather, it is substantially mediated by an increased production and release of endogenous TNFα.
View Article and Find Full Text PDFControversy currently exists about the ability of human neutrophils to produce IL-6. Here, we show that the chromatin organization of the IL-6 genomic locus in human neutrophils is constitutively kept in an inactive configuration. However, we also show that upon exposure to stimuli that trigger chromatin remodelling at the IL-6 locus, such as ligands for TLR8 or, less efficiently, TLR4, highly purified neutrophils express and secrete IL-6.
View Article and Find Full Text PDFTo identify the molecular basis of IL-10 expression in human phagocytes, we evaluated the chromatin modification status at their IL-10 genomic locus. We analyzed posttranslational modifications of histones associated with genes that are active, repressed, or poised for transcriptional activation, including H3K4me3, H4Ac, H3K27Ac, and H3K4me1 marks. Differently from autologous IL-10-producing monocytes, none of the marks under evaluation was detected at the IL-10 locus of resting or activated neutrophils from healthy subjects or melanoma patients.
View Article and Find Full Text PDFThe notion that neutrophils play a pivotal role in orchestrating ongoing inflammatory immune responses has been bolstered by several fairly newly described effector mechanisms, particularly their capacity to serve as a source of cytokines. This frequently neglected phenomenon is acquiring more and more credit and, as a result, our understanding of the molecular basis of neutrophil-derived cytokines has grown tremendously in the past 20 years. It is now clear that cytokine secretion by neutrophils is controlled by sophisticated regulatory mechanisms.
View Article and Find Full Text PDF