Publications by authors named "Maikol Salas-Ramirez"

Background: Although the importance of quantitative SPECT has increased tremendously due to newly developed therapeutic radiopharmaceuticals, there are still no accreditation programs to harmonize SPECT imaging. Work is currently underway to develop an accreditation for quantitative Lu SPECT/CT. The aim of this study is to verify whether the positioning of the spheres within the phantom has an influence on the recovery and thus needs to be considered in SPECT harmonization.

View Article and Find Full Text PDF

With the development of new radiopharmaceutical therapies, quantitative SPECT/CT has progressively emerged as a crucial tool for dosimetry. One major obstacle of SPECT is its poor resolution, which results in blurring of the activity distribution. Especially for small objects, this so-called partial-volume effect limits the accuracy of activity quantification.

View Article and Find Full Text PDF

Introduction: CT-based attenuation correction (CT-AC) plays a major role in accurate activity quantification by SPECT/CT imaging. However, the effect of kilovoltage peak (kVp) and quality-reference mAs (QRM) on the attenuation coefficient image (μ-map) and volume CT dose index (CTDI) have not yet been systematically evaluated. Therefore, the aim of this study was to fill this gap and investigate the influence of kVp and QRM on CT-AC in Lu SPECT/CT imaging.

View Article and Find Full Text PDF

Unlabelled: This study describes a method to validate a radiation transport model that quantifies the number of DNA double-strand breaks (DSB) produced in the lymphocyte nucleus by internal ex vivo irradiation of whole blood with the radionuclides Y, Tc, I, I, Lu, Ra, and Ac in a test vial using the GATE/Geant4 code at the macroscopic level and the Geant4-DNA code at the microscopic level.

Methods: The simulation at the macroscopic level reproduces an 8 mL cylindrical water-equivalent medium contained in a vial that mimics the geometry for internal ex vivo blood irradiation. The lymphocytes were simulated as spheres of 3.

View Article and Find Full Text PDF

Background: In recent years, a lot of effort has been put in the enhancement of medical imaging using artificial intelligence. However, limited patient data in combination with the unavailability of a ground truth often pose a challenge to a systematic validation of such methodologies. The goal of this work was to investigate a recently proposed method for an artificial intelligence-based generation of synthetic SPECT projections, for acceleration of the image acquisition process based on a large dataset of realistic SPECT simulations.

View Article and Find Full Text PDF

Unlabelled: To establish a dose-response relationship between radiation-induced DNA damage and the corresponding absorbed doses in blood irradiated with radionuclides in solution under ex vivo conditions, the absorbed dose coefficient for 1 ml for 1 h internal ex vivo irradiation of peripheral blood (d) must be determined. d is specific for each radionuclide, and it depends on the irradiation geometry. Therefore, the aim of this study is to use the Monte Carlo radiation transport code GATE/Geant4 to calculate the mean absorbed dose rates for ex vivo irradiation of blood with several radionuclides used in Nuclear Medicine.

View Article and Find Full Text PDF

Unlabelled: A patient-specific absorbed dose calculation for red marrow dosimetry requires quantifying patient-specific volume fractions of the red marrow, yellow marrow, and trabecular bone in the spongiosa of several skeletal sites. This quantification allows selecting appropriate S values calculated from the parameterized radiation transport models for bone and bone marrow dosimetry. Currently, no comprehensive, individualized, and non-invasive procedure is available for quantifying the volume fractions of red marrow, yellow marrow, and trabecular bone in the spongiosa.

View Article and Find Full Text PDF

Improvements in quantitative SPECT/CT have aroused growing interest in voxel-based dosimetry for radionuclide therapies, because it promises visualization of absorbed doses at a voxel level. In this work, SPECT/CT-based voxel-level dosimetry of a 3-dimensional (3D) printed 2-compartment kidney phantom was performed, and the resulting absorbed dose distributions were examined. Additionally, the potential of the PETPVC partial-volume correction tool was investigated.

View Article and Find Full Text PDF

A complete characterization of spongiosa (bone marrow plus trabecular bone) is required to calculate the absorbed dose to active bone marrow. Due to the complex microanatomy, it is necessary to apply non-conventional imaging methods in nuclear medicine. The aim of this study is validating a phantomless quantification method using dual-energy quantitative computed tomography (DEQCT) for the quantification of trabecular bone volume fraction for bone marrow dosimetry in molecular radiotherapy.

View Article and Find Full Text PDF

Absorbed dose to active bone marrow is a predictor of hematological toxicity in molecular radiotherapy. Due to the complex composition of bone marrow tissue, the necessity to improve the personalized dosimetry has led to the application of non-conventional imaging methods in nuclear medicine. The aim of this study is to apply magnetic resonance imaging (MRI) for quantification of the fat fraction in lumbar vertebrae and to analyze its implications for bone marrow dosimetry.

View Article and Find Full Text PDF