Publications by authors named "Maiko Tomioka"

ATP-binding cassette subfamily A member 13 (ABCA13) is predicted to be the largest ABC protein, consisting of 5058 amino acids and a long N-terminal region. Mutations in the ABCA13 gene were reported to increase the susceptibility to schizophrenia, bipolar disorder, and major depression. However, little is known about the molecular functions of ABCA13 or how they associate with psychiatric disorders.

View Article and Find Full Text PDF

ATP-Binding Cassette A1 (ABCA1) is a key lipid transporter for cholesterol homeostasis. We recently reported that ABCA1 not only exports excess cholesterol in an apoA-I dependent manner, but that it also flops cholesterol from the inner to the outer leaflet of the plasma membrane. However, the relationship between these two activities of ABCA1 is still unclear.

View Article and Find Full Text PDF

The ATP-binding cassette transporter A7 (ABCA7), which is highly expressed in the brain, is associated with the pathogenesis of Alzheimer's disease (AD). However, the physiological function of ABCA7 and its transport substrates remain unclear. Immunohistochemical analyses of human brain sections from AD and non-AD subjects revealed that ABCA7 is expressed in neuron and microglia cells in the cerebral cortex.

View Article and Find Full Text PDF

A small-molecule fluorescent probe specific for human pluripotent stem cells would serve as a useful tool for basic cell biology research and stem cell therapy. Screening of fluorescent chemical libraries with human induced pluripotent stem cells (iPSCs) and subsequent evaluation of hit molecules identified a fluorescent compound (Kyoto probe 1 [KP-1]) that selectively labels human pluripotent stem cells. Our analyses indicated that the selectivity results primarily from a distinct expression pattern of ABC transporters in human pluripotent stem cells and from the transporter selectivity of KP-1.

View Article and Find Full Text PDF

Rare coding variants of ATP-binding cassette protein A13 (ABCA13) contribute to the risk of neurological disorders, but little is known about the physiological function of ABCA13 and how single nucleotide polymorphisms (SNPs) affect it. Here, we examined the effects of neurological disorder-related SNPs ABCA13, T4031A and R4843C in the context of ABCA1, and found that the former SNP (T1088A in ABCA1) severely impaired the ABCA1 functions of apolipoprotein A-I (apoA-I) binding and cholesterol efflux. The antibody against mouse ABCA13 reacted with neurons in the cerebral cortex, hippocampus, and cerebellum.

View Article and Find Full Text PDF

The loading of antigenic peptides onto major histocompatibility complex class I (MHC I) molecules is an essential step in the adaptive immune response against virally or malignantly transformed cells. The ER-resident peptide-loading complex (PLC) consists of the transporter associated with antigen processing (TAP1 and TAP2), assembled with the auxiliary factors tapasin and MHC I. Here, we demonstrated that the N-terminal extension of each TAP subunit represents an autonomous domain, named TMD(0), which is correctly targeted to and inserted into the ER membrane.

View Article and Find Full Text PDF

The ATP-binding cassette protein A1 (ABCA1) mediates the secretion of cellular-free cholesterol and phospholipids to an extracellular acceptor, apolipoprotein A-I, to form high-density lipoprotein. Because ABCA1 is a key factor in cholesterol homeostasis, elaborate transcriptional and post-transcriptional regulations of ABCA1 have evolved to maintain cholesterol homeostasis. Recent studies suggest that ABCA1 moves lipids not only between membranes but also within membranes to organize and reorganize membrane meso-domains to modulate cell proliferation and immunity.

View Article and Find Full Text PDF