Bone morphogenetic proteins (BMPs) have been used for orthopedic and dental application due to their osteoinductive properties; however, substantial numbers of adverse reactions such as heterotopic bone formation, increased bone resorption and greater cancer risk have been reported. Since bone morphogenetic proteins signaling exerts pleiotropic effects on various tissues, it is crucial to understand tissue-specific and context-dependent functions of bone morphogenetic proteins. We previously reported that loss-of-function of bone morphogenetic proteins receptor type IA (BMPR1A) in osteoblasts leads to more bone mass in mice partly due to inhibition of bone resorption, indicating that bone morphogenetic protein signaling in osteoblasts promotes osteoclast function.
View Article and Find Full Text PDFQuiescent prostate cancer (PCa) cells are common in tumors but are often resistant to chemotherapy. Quiescent PCa cells are also enriched for a stem-like tumor initiating population, and can lead to recurrence after dormancy. Unfortunately, quiescent PCa cells are difficult to identify and / or target with treatment in part because the relevant markers are intracellular and regulated by protein stability.
View Article and Find Full Text PDFPathobionts employ unique metabolic adaptation mechanisms to maximize their growth in disease conditions. Adherent-invasive Escherichia coli (AIEC), a pathobiont enriched in the gut mucosa of patients with inflammatory bowel disease (IBD), utilizes diet-derived L-serine to adapt to the inflamed gut. Therefore, the restriction of dietary L-serine starves AIEC and limits its fitness advantage.
View Article and Find Full Text PDFOsteoclasts are large multinucleated cells from hematopoietic origin and are responsible for bone resorption. A balance between osteoclastic bone resorption and osteoblastic bone formation is critical to maintain bone homeostasis. The alveolar bone, also called the alveolar process, is the part of the jawbone that holds the teeth and supports oral functions.
View Article and Find Full Text PDFTissue engineering aims to repair, restore, and/or replace tissues in the human body as an alternative to grafts and prostheses. Biomaterial scaffolds can be utilized to provide a three-dimensional microenvironment to facilitate tissue regeneration. Previously, we reported that scaffold pore size influences vascularization and extracellular matrix composition both in vivo and in vitro, to ultimately influence tissue phenotype for regenerating cranial suture and bone tissues, which have markedly different tissue properties despite similar multipotent stem cell populations.
View Article and Find Full Text PDFDental pulp stem cells (DPSCs) are suitable for use in regenerative medicine. Cryopreserved human DPSCs (hDPSCs) ameliorate diabetic polyneuropathy, and the effects of hDPSC transplantation are related to VEGF and NGF secretion. This study evaluated the long-term effects of a single transplantation of hDPSCs on diabetic polyneuropathy.
View Article and Find Full Text PDFBackground: Extracellular vesicles (EVs) are known to be secreted by various cells. In particular, mesenchymal stem cell (MSC)-derived EVs (MSC-EVs) have tissue repair capacity and anti-inflammatory properties. Dental pulp stem cells (DPSCs), which are MSCs isolated from pulp tissue, are less invasive to the body than other MSCs and can be collected from young individuals.
View Article and Find Full Text PDFCraniosynostosis is a debilitating birth defect characterized by the premature fusion of cranial bones resulting from premature loss of stem cells located in suture tissue between growing bones. Mesenchymal stromal cells in long bone and the cranial suture are known to be multipotent cell sources in the appendicular skeleton and cranium, respectively. We are developing biomaterial constructs to maintain stemness of the cranial suture cell population towards an ultimate goal of diminishing craniosynostosis patient morbidity.
View Article and Find Full Text PDFBackground: Dental pulp stem cells (DPSCs) have high proliferation and multi-differentiation capabilities that maintain their functionality after cryopreservation. In our previous study, we demonstrated that cryopreserved rat DPSCs improved diabetic polyneuropathy and that the efficacy of cryopreserved rat DPSCs was equivalent to that of freshly isolated rat DPSCs. The present study was conducted to evaluate whether transplantation of cryopreserved human DPSCs (hDPSCs) is also effective for the treatment of diabetic polyneuropathy.
View Article and Find Full Text PDFBone morphogenetic protein (BMP) signaling in osteoblasts plays critical roles in skeletal development and bone homeostasis. Our previous studies showed loss of function of BMPR1A, one of the type 1 receptors for BMPs, in osteoblasts results in increased trabecular bone mass in long bones due to an imbalance between bone formation and bone resorption. Decreased bone resorption was associated with an increased mature-to-immature collagen cross-link ratio and mineral-matrix ratios in the trabecular compartments, and increased tissue-level biomechanical properties.
View Article and Find Full Text PDFDentinogenesis, a formation of dentin by odontoblasts, is an essential process during tooth development. Bone morphogenetic proteins (BMPs) are one of the most crucial growth factors that contribute to dentin formation. However, it is still unclear how BMP signaling pathways regulate postnatal crown and root dentinogenesis.
View Article and Find Full Text PDFBone morphogenetic proteins (BMPs) are important mediators of osteoclast differentiation. Although accumulating evidence has implicated BMPs in osteoblastogenesis, the mechanisms by which BMPs regulate osteoclastogenesis remain unclear. Activin A receptor type 1 (ACVR1) is a BMP type 1 receptor essential for skeletal development.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2019
Titanium (Ti) and its alloys are used in orthopedic and dental implants due to their excellent physical properties and biocompatibility. Although Ti exhibits superior osteoconductive properties compared to those of polymer-based implants, improved bone-on growth properties are required for enhanced surgical outcomes and improved recovery surgical interventions. Herein, we demonstrate a novel surface modification strategy to enhance the osteoconductivity of Ti surfaces through the grafting-from procedure of a reactive copolymer via surface-initiated atom transfer radical polymerization (SI-ATRP).
View Article and Find Full Text PDFBiomacromolecules
September 2018
Cationic hyperbranched polymers (HBP) were prepared by self-condensing vinyl polymerization of an atom transfer radical polymerization (ATRP) inimer containing a quaternary ammonium group. Two types of biocompatible shells, poly(oligoethylene glycol) methacrylate (polyOEGMA) and poly(2-(methylsulfinyl) ethyl methacrylate) (polyDMSO), were grafted respectively from HBP core to form core-shell structures with low molecular weight dispersity and high biocompatibility, polyOEGMA-HBP and polyDMSO-HBP. Both of the structures showed low cytotoxicity and good siRNA complexing ability.
View Article and Find Full Text PDFBackground: Although previous reports have revealed the therapeutic potential of stem cell transplantation in diabetic polyneuropathy, the effects of cell transplantation on long-term diabetic polyneuropathy have not been investigated. In this study, we investigated whether the transplantation of dental pulp stem cells (DPSCs) ameliorated long-term diabetic polyneuropathy in streptozotocin (STZ)-induced diabetic rats.
Methods: Forty-eight weeks after STZ injection, we transplanted DPSCs into the unilateral hindlimb skeletal muscles.
The aim of this study was to assess the efficacy of a self-assembling peptide hydrogel as a scaffold for bone regeneration. We used a neutral and injectable self-assembling peptide hydrogel, SPG-178-Gel. Bone defects (5 mm in diameter) in rat calvarial bones were filled with a mixture of alpha-modified Eagle's medium and peptide hydrogel.
View Article and Find Full Text PDFDental pulp stem cells (DPSCs), which can differentiate into several types of cells, are subjected to mechanical stress by jaw movement and occlusal forces. In this study, we evaluated how the uniaxial mechanical stretch influences proliferation and differentiation of DPSCs. DPSCs were isolated and cultured from male Sprague-Dawley rats.
View Article and Find Full Text PDF