Chagas disease is a significant public health risk in rural and semi-rural areas of Venezuela. Triatomine infection by the aetiological agent Trypanosoma cruzi is also observed in the Metropolitan District of Caracas (MDC), where foodborne T. cruzi outbreaks occasionally occur but active vector-to-human transmission (infection during triatomine bloodmeal) is considered absent.
View Article and Find Full Text PDFTesting and isolation have been crucial for controlling the COVID-19 pandemic. Venezuela has one of the weakest testing infrastructures in Latin America and the low number of reported cases in the country has been attributed to substantial underreporting. However, the Venezuelan epidemic seems to have lagged behind other countries in the region, with most cases occurring within the capital region and four border states.
View Article and Find Full Text PDFAnalysis of genetic polymorphism is a powerful tool for epidemiological surveillance and research. Powerful inference from pathogen genetic variation, however, is often restrained by limited access to representative target DNA, especially in the study of obligate parasitic species for which ex vivo culture is resource-intensive or bias-prone. Modern sequence capture methods enable pathogen genetic variation to be analyzed directly from host/vector material but are often too complex and expensive for resource-poor settings where infectious diseases prevail.
View Article and Find Full Text PDFIn the past 5-10 years, Venezuela has faced a severe economic crisis, precipitated by political instability and declining oil revenue. Public health provision has been affected particularly. In this Review, we assess the impact of Venezuela's health-care crisis on vector-borne diseases, and the spillover into neighbouring countries.
View Article and Find Full Text PDFPanstrongylus geniculatus has become the most frequently registered vector of Chagas disease in the metropolitan area of Caracas, Venezuela. This triatomine species has invaded urban areas in recent years and has been implicated in multiple oral outbreaks of Chagas disease in the region. The study of genetic variability and spatial structure in P.
View Article and Find Full Text PDFBackground: Chagas' disease is caused by the protozoan Trypanosoma cruzi and is autochthonous to the Americas. Its distribution depends on triatomine bugs that are responsible for the transmission of the disease. In 2005, we reported the presence of Panstrongylus geniculatus as a risk for Chagas' disease transmission in Caracas and neighboring areas.
View Article and Find Full Text PDFTriatoma sordida is widely distributed throughout the Chaco and the Eastern Region of Paraguay. It is associated to palm trees and artificial ecotopes located in peridomestic environments. The aim of this work was to determine genetic and morphometric variability and feeding behavior among population of T.
View Article and Find Full Text PDFOral outbreaks of Chagas disease are increasingly reported in Latin America. The transitory presence of Trypanosoma cruzi parasites within contaminated foods, and the rapid consumption of those foods, precludes precise identification of outbreak origin. We report source attribution for 2 peri-urban oral outbreaks of Chagas disease in Venezuela via high resolution microsatellite typing.
View Article and Find Full Text PDFTrypanosoma cruzi, the etiological agent of Chagas disease, is highly genetically diverse. Numerous lines of evidence point to the existence of six stable genetic lineages or DTUs: TcI, TcIIa, TcIIb, TcIIc, TcIId, and TcIIe. Molecular dating suggests that T.
View Article and Find Full Text PDFThe collection of Panstrongylus geniculatus bugs by inhabitants of dwellings in Caracas city (Metropolitan District) and in the neighboring Miranda and Vargas Sates, Venezuela, allowed for the gathering of data on the potential role of this sylvatic triatomine bug as a vector of Chagas disease in this area. The natural infection by Trypanosoma cruzi was recorded by examining fresh and stained faeces of the bugs. Additionally, a random amplification of polymorphic DNA technique for parasite identification and group typing was employed.
View Article and Find Full Text PDF