Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation technique gaining more attention in neurodevelopmental disorders (NDDs). Due to the phenotypic heterogeneity of NDDs, tDCS is unlikely to be equally effective in all individuals. The present study aimed to establish neuroanatomical markers in typically developing (TD) individuals that may be used for the prediction of individual responses to tDCS.
View Article and Find Full Text PDFTranscranial Direct Current Stimulation (tDCS) is a non-invasive neuromodulation technique with a wide variety of clinical and research applications. As increasingly acknowledged, its effectiveness is subject dependent, which may lead to time consuming and cost ineffective treatment development phases. We propose the combination of electroencephalography (EEG) and unsupervised learning for the stratification and prediction of individual responses to tDCS.
View Article and Find Full Text PDFObjective: Alpha oscillations are linked to inhibitory capabilities in higher cognitive processing. Transcranial alternating current stimulation (tACS) at 10 Hz can enhance alpha oscillations and modulate behaviour. One possibility to increase the efficacy of tACS may be stimulating at the individual alpha frequency (IAF).
View Article and Find Full Text PDFMethodological studies investigating transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (lDLPFC) in paediatric populations are limited. Therefore, we investigated in a paediatric population whether stimulation success of multichannel tDCS over the lDLPFC depends on concurrent task performance and individual head anatomy. In a randomised, sham-controlled, double-blind crossover study 22 healthy participants (10-17 years) received 2 mA multichannel anodal tDCS (atDCS) over the lDLPFC with and without a 2-back working memory (WM) task.
View Article and Find Full Text PDFAnodal transcranial direct current stimulation (tDCS), applied over the left dorsolateral prefrontal cortex (lDLPFC), can produce significant effects on working memory (WM) performance and associated neurophysiological activity. However, results from previous studies are inconsistent and occasionally contradictory. This inconsistency may be attributed to methodological and individual differences during experiments.
View Article and Find Full Text PDFThe aim of this study was to investigate the effect of transcranial random noise (tRNS) and transcranial alternating current (tACS) stimulation on motor cortex excitability in healthy children and adolescents. Additionally, based on our recent results on the individual response to sham in adults, we explored this effect in the pediatric population. We included 15 children and adolescents (10-16 years) and 28 adults (20-30 years).
View Article and Find Full Text PDF