Publications by authors named "Maike Becker"

Tissue regulatory T cells (Tregs) exert pivotal functions in both immune and metabolic regulation, maintaining local tissue homeostasis, integrity, and function. Accordingly, Tregs play a crucial role in controlling obesity-induced inflammation and supporting efficient muscle function and repair. Depending on the tissue context, Tregs are characterized by unique transcriptomes, growth, and survival factors and T cell receptor (TCR) repertoires.

View Article and Find Full Text PDF

Muscle-residing regulatory T cells (Tregs) control local tissue integrity and function. However, the molecular interface connecting Treg-based regulation with muscle function and regeneration remains largely unexplored. Here, we show that exercise fosters a stable induction of highly functional muscle-residing Tregs with increased expression of amphiregulin (Areg), EGFR, and ST2.

View Article and Find Full Text PDF

N,N-dimethylglycine (DMG) is a naturally occurring compound being widely used as an oral supplement to improve growth and physical performance. Thus far, its effects on human skin have not been described in the literature. For the first time, we show that N,N-dimethylglycine sodium salt (DMG-Na) promoted the proliferation of cultured human epidermal HaCaT keratinocytes.

View Article and Find Full Text PDF

Background: Cancer is primarily a disease of high age in humans, yet most mouse studies on cancer cachexia are conducted using young adolescent mice. Given that metabolism and muscle function change with age, we hypothesized that aging may affect cachexia progression in mouse models.

Methods: We compare tumor and cachexia development in young and old mice of three different strains (C57BL/6J, C57BL/6N, BALB/c) and with two different tumor cell lines (Lewis Lung Cancer, Colon26).

View Article and Find Full Text PDF

As a microcosm for future challenges, the COVID-19 pandemic exhibits increasingly transboundary dynamics, causing interconnected problems across multiple societal systems. To examine the role of innovations as a social mechanism to reconcile these arising challenges, we view the unfolding of the pandemic through the lens of a content analysis of 707 innovation projects that address the fundamental human needs of consumers and businesses. This study proposes a novel procedure to characterize large-scale innovative activities via text mining and employs a theoretical framework for identifying the pressing societal needs amidst crises.

View Article and Find Full Text PDF

The "self" shapes the way in which we process the world around us. It makes sense then, that self-related information is reliably prioritised over non self-related information in cognition. How might other factors such as self-compatibility shape the way self-relevant information is prioritised? The present work asks whether affective consistency between the self and arbitrarily self-associated stimuli influences the degree to which self-prioritisation can be observed.

View Article and Find Full Text PDF

Caffeine, particularly after ingestion, is well known to exert various pharmacological effects. A growing body of evidence implicates the ingestion of caffeine with beneficial effects on several diseases. The easy penetration of caffeine across the skin barrier and into human skin makes caffeine an ideal compound for topical application.

View Article and Find Full Text PDF

Persisting even when the rewards of continued effort are fading is essential for achieving long-term goals, skills, and good health, alike. Yet, we often quit when things get hard. Here, we tested whether augmenting the feeling of control through external measures increases persistence under such discouraging circumstances.

View Article and Find Full Text PDF

Objective: Obesity and type-2 diabetes (T2D) are metabolic diseases that represent a critical health problem worldwide. Metabolic disease is differentially associated with fat distribution, while visceral white adipose tissue (VAT) is particularly prone to obesity-associated inflammation. Next to their canonical function of immune suppression, regulatory T cells (Tregs) are key in controlling adipose tissue homeostasis.

View Article and Find Full Text PDF

Molecular checkpoints that trigger the onset of islet autoimmunity or progression to human type 1 diabetes (T1D) are incompletely understood. Using T cells from children at an early stage of islet autoimmunity without clinical T1D, we find that a microRNA181a (miRNA181a)-mediated increase in signal strength of stimulation and costimulation links nuclear factor of activated T cells 5 (NFAT5) with impaired tolerance induction and autoimmune activation. We show that enhancing miRNA181a activity increases NFAT5 expression while inhibiting FOXP3 regulatory T cell (T) induction in vitro.

View Article and Find Full Text PDF

Obesity and type 2 diabetes are associated with metabolic defects and adipose tissue inflammation. Foxp3 regulatory T cells (Tregs) control tissue homeostasis by counteracting local inflammation. However, if and how T cells interlink environmental influences with adipocyte function remains unknown.

View Article and Find Full Text PDF

Obesity and type-2 diabetes (T2D) are associated with metabolic defects and inflammatory processes in fat depots. FoxP3 regulatory T cells (Tregs) control immune tolerance, and have an important role in controlling tissue-specific inflammation. In this mini-review we will discuss current insights into how cross-talk between T cells and adipose tissue shapes the inflammatory environment in obesity-associated metabolic diseases, focusing on the role of CD4 T cells and Tregs.

View Article and Find Full Text PDF

The combination of micro synthetic structures with bacterial flagella motors represents an actual trend for the construction of self-propelled micro-robots. The development of methods for fabrication of these bacteria-based robots is a first crucial step towards the realization of functional miniature and autonomous moving robots. We present a novel scheme based on optical trapping to fabricate living micro-robots.

View Article and Find Full Text PDF

Site-selective immobilization of dyes and different protein recognizing entities at the surface of zeolite L crystals using mild radical nitroxide exchange reactions is reported. Exposure of these crystals to aqueous protein solutions leads to site-selective immobilization of proteins onto the crystals.

View Article and Find Full Text PDF

Background: We sought to determine the performance of the new high sensitivity cardiac troponin T assay (TnThs) for early diagnosis of myocardial infarction in patients with suspected acute coronary syndrome (ACS) and compare it with the fourth generation cTnT assay, myoglobin and heart-type fatty acid binding protein (h-FABP).

Methods: Ninety-four patients with diagnosis of suspected ACS without ST-segment elevation admitted to our chest pain unit were included. Patients were divided according to time from onset of symptoms to presentation into an early presenter group (<4 h) and a late presenter group (≥4 h).

View Article and Find Full Text PDF

Systematic studies are presented demonstrating the complementarity of directed ortho metalation (DoM) and Ir-catalyzed strategies for the provision of borylated aromatics and their subsequent Suzuki-Miyaura coupling reactions. A new concept, the use of the TMS group, readily introduced by DoM, as a latent regiodirective moiety to overcome the otherwise problematic production of isomeric borylated product mixtures is presented. Additional electrophile-induced ipso-deborylation and DoM reactions of the Bpin products are described.

View Article and Find Full Text PDF