Publications by authors named "Maik Wolfram-Schauerte"

Lytic bacteriophages hold substantial promise in medical and biotechnological applications. Therefore a comprehensive understanding of phage infection mechanisms is crucial. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis.

View Article and Find Full Text PDF

RNA modifications play essential roles in modulating RNA function, stability, and fate across all kingdoms of life. The entirety of the RNA modifications within a cell is defined as the epitranscriptome. While eukaryotic RNA modifications are intensively studied, understanding bacterial RNA modifications remains limited, and knowledge about bacteriophage RNA modifications is almost nonexistent.

View Article and Find Full Text PDF

The mechanisms by which viruses hijack the genetic machinery of the cells they infect are of current interest. When bacteriophage T4 infects Escherichia coli, it uses three different adenosine diphosphate (ADP)-ribosyltransferases (ARTs) to reprogram the transcriptional and translational apparatus of the host by ADP-ribosylation using nicotinamide adenine dinucleotide (NAD) as a substrate. NAD has previously been identified as a 5' modification of cellular RNAs.

View Article and Find Full Text PDF

Bacteriophages are highly abundant viruses of bacteria. The major role of phages in shaping bacterial communities and their emerging medical potential as antibacterial agents has triggered a rebirth of phage research. To understand the molecular mechanisms by which phages hijack their host, omics technologies can provide novel insights into the organization of transcriptional and translational events occurring during the infection process.

View Article and Find Full Text PDF

RNA modifications immensely expand the diversity of the transcriptome, thereby influencing the function, localization, and stability of RNA. One prominent example of an RNA modification is the eukaryotic cap located at the 5' terminus of mRNAs. Interestingly, the redox cofactor NAD can be incorporated into RNA by RNA polymerase in vitro.

View Article and Find Full Text PDF