Complex oxides that adopt the isometric spinel structure (ABO) are important for numerous technological applications and are relevant for certain geological processes, which involve exposure to extreme environments such as high pressures and temperatures. Recent studies have shown that the changes to the spinel structure caused by these environments are complex and depend on the material length scale under consideration. In this study, we have expanded this approach to the behavior of spinels under high temperatures.
View Article and Find Full Text PDFFluorite-structured oxides constitute an important class of materials for energy technologies. Despite their high level of structural symmetry and simplicity, these materials can accommodate atomic disorder without losing crystallinity, making them indispensable for uses in environments with high temperature, changing chemical compositions, or intense radiation fields. In this contribution, we present a set of simple rules that predict whether a compound may adopt a disordered fluorite structure.
View Article and Find Full Text PDFPyrochlore (ABO) is an important, isometric structure-type because of its large variety of compositions and structural derivatives that are generally related to different disordering mechanisms at various spatial scales. The disordering is key to understanding variations in properties, such as magnetic behavior or ionic conduction. Neutron and X-ray total scattering methods were used to investigate the degree of structural disorder in the HoTi Zr O ( = 0.
View Article and Find Full Text PDFDisordered crystalline materials are used in a wide variety of energy-related technologies. Recent results from neutron total scattering experiments have shown that the atomic arrangements of many disordered crystalline materials are not random nor are they represented by the long-range structure observed from diffraction experiments. Despite the importance of disordered materials and the impact of disorder on the expression of physical properties, the underlying fundamental atomic-scale rules of disordering are not currently well understood.
View Article and Find Full Text PDFFission track thermochronology is routinely used to investigate the thermal history of sedimentary basins, as well as tectonic uplift and denudation rates. While the effect of temperature on fission track annealing has been studied extensively to calibrate the application of the technique, the effect of pressure during annealing is generally considered to be negligible. However, a previous study suggested elevated pressure results in a significantly different annealing behaviour that was previously unknown.
View Article and Find Full Text PDFBorosilicate glasses are the favored material for immobilization of high-level nuclear waste (HLW) from the reprocessing of spent fuel used in nuclear power plants. To assess the long-term stability of nuclear waste glasses, it is crucial to understand how self-irradiation affects the structural state of the glass and influences its dissolution behavior. In this study, we focus on the effect of heavy ion irradiation on the forward dissolution rate of a non-radioactive ternary borosilicate glass.
View Article and Find Full Text PDFDepending on intrinsic (e.g., radius ratio rule r/ r) and extrinsic factors (e.
View Article and Find Full Text PDFThe effects of swift heavy ion irradiation-induced disordering on the behavior of lanthanide zirconate compounds (LnZrO where Ln = Sm, Er, or Nd) at high pressures are investigated. After irradiation with 2.2 GeV Au ions, the initial ordered pyrochlore structure (Fd3[combining macron]m) transformed to a defect-fluorite structure (Fm3[combining macron]m) in SmZrO and NdZrO.
View Article and Find Full Text PDFThe structural evolution of lanthanide ATiO (A = Dy, Gd, Yb, Er) at high pressure is investigated using synchrotron X-ray diffraction. The effects of A-site cation size and of the initial structure are systematically examined by varying the composition of the isostructural lanthanide titanates and the structure of dysprosium titanate polymorphs (orthorhombic, hexagonal, and cubic), respectively. All samples undergo irreversible high-pressure phase transformations, but with different onset pressures depending on the initial structure.
View Article and Find Full Text PDFMany-body effects produce deviations from the predictions of conventional band theory in quantum materials, leading to strongly correlated phases with insulating or bad metallic behavior. One example is the rare-earth nickelates RNiO, which undergo metal-to-insulator transitions (MITs) whose origin is debated. Here, we combine total neutron scattering and broadband dielectric spectroscopy experiments to study and compare carrier dynamics and local crystal structure in LaNiO and NdNiO.
View Article and Find Full Text PDFA wide variety of compositions adopt the isometric spinel structure (ABO), in which the atomic-scale ordering is conventionally described according to only three structural degrees of freedom. One, the inversion parameter, is traditionally defined as the degree of cation exchange between the A- and B-sites. This exchange, a measure of intrinsic disorder, is fundamental to understanding the variation in the physical properties of different spinel compositions.
View Article and Find Full Text PDFHigh-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi.
View Article and Find Full Text PDFFluorite-structured oxides find widespread use for applications spanning nuclear energy and waste containment, energy conversion, and sensing. In such applications the host tetravalent cation is often partially substituted by trivalent cations, with an associated formation of charge-compensating oxygen vacancies. The stability and properties of such materials are known to be influenced strongly by chemical ordering of the cations and vacancies, and the nature of such ordering and associated energetics are thus of considerable interest.
View Article and Find Full Text PDFWe report on unexpected dramatic radial variations in ion tracks formed by irradiation with energetic ions (2.3 GeV (208)Pb) at a constant electronic energy-loss (~42 keV/nm) in pyrochlore-structured Gd2TiZrO7. Though previous studies have shown track formation and average track diameter measurements in the Gd2TixZr(1-x)O7 system, the present work clearly reveals the importance of the recrystallization process in ion track formation in this system, which leads to more morphological complexities in tracks than currently accepted behavior.
View Article and Find Full Text PDFRecent accidents resulting in worker injury and radioactive contamination occurred due to pressurization of uranium yellowcake drums produced in the western U.S.A.
View Article and Find Full Text PDFThere has been an increased focus on understanding the energetics of structures with unconventional ordering (for example, correlated disorder that is heterogeneous across different length scales). In particular, compounds with the isometric pyrochlore structure, A2B2O7, can adopt a disordered, isometric fluorite-type structure, (A, B)4O7, under extreme conditions. Despite the importance of the disordering process there exists only a limited understanding of the role of local ordering on the energy landscape.
View Article and Find Full Text PDFEnergetic radiation can cause dramatic changes in the physical and chemical properties of actinide materials, degrading their performance in fission-based energy systems. As advanced nuclear fuels and wasteforms are developed, fundamental understanding of the processes controlling radiation damage accumulation is necessary. Here we report oxidation state reduction of actinide and analogue elements caused by high-energy, heavy ion irradiation and demonstrate coupling of this redox behaviour with structural modifications.
View Article and Find Full Text PDFJ Phys Condens Matter
April 2013
Tracks formed by swift-heavy ion irradiation, 2.2 GeV Au, of isometric Gd2Ti2O7 pyrochlore and orthorhombic Gd2TiO5 were modeled using the thermal-spike model combined with a molecular-dynamics simulation. The thermal-spike model was used to calculate the energy dissipation over time and space.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2012
Bulk ZrO(2) polymorphs generally have an extremely high amorphization tolerance upon low energy ion and swift heavy ion irradiation in which ballistic interaction and ionization radiation dominate the ion-solid interaction, respectively. However, under very high-energy irradiation by 1.33 GeV U-238, nanocrystalline (40-50 nm) monoclinic ZrO(2) can be amorphized.
View Article and Find Full Text PDFJ Synchrotron Radiat
November 2009
Swift heavy-ion irradiations of a wide variety of materials have been used to modify and manipulate the properties of solids at the nanoscale. Recently, these high-energy irradiations have been successfully combined with high-pressure experiments. Based on results obtained for zircon (ZrSiO(4)), this paper introduces this new experimental approach involving diamond anvil cells and large ion-accelerator facilities.
View Article and Find Full Text PDFHigh-pressure and high-temperature phases show unusual physical and chemical properties, but they are often difficult to 'quench' to ambient conditions. Here, we present a new approach, using bombardment with very high-energy, heavy ions accelerated to relativistic velocities, to stabilize a high-pressure phase. In this case, Gd(2)Zr(2)O(7), pressurized in a diamond-anvil cell up to 40 GPa, was irradiated with 20 GeV xenon or 45 GeV uranium ions, and the (previously unquenchable) cubic high-pressure phase was recovered after release of pressure.
View Article and Find Full Text PDFIn many solids, heavy ions of high kinetic energy (MeV-GeV) produce long cylindrical damage trails with diameters of order 10 nm. Up to now, no information was available how solids cope with the simultaneous exposure to these energetic projectiles and to high pressure. We report the first experiments where relativistic uranium and gold ions from the SIS heavy-ion synchrotron at GSI were injected through several mm of diamond into solid samples pressurized up to 14 GPa in a diamond anvil cell.
View Article and Find Full Text PDF