Publications by authors named "Maik C Bischoff"

Cell motility is crucial for many biological processes including morphogenesis, wound healing, and cancer invasion. The WAVE regulatory complex (WRC) is a central Arp2/3 regulator driving cell motility downstream of activation by Rac GTPase. CYFIP-related Rac1 interactor (CYRI) proteins are thought to compete with WRC for interaction with Rac1 in a feedback loop regulating lamellipodia dynamics.

View Article and Find Full Text PDF

Collective cell migration is critical for morphogenesis, homeostasis, and wound healing. During development migrating mesenchymal cells form tissues that shape some of the body's organs. We have developed a powerful model for examining this, exploring how Drosophila testis nascent myotubes migrate onto the testis during pupal development, forming the muscles that ensheath it and also creating its characteristic spiral shape.

View Article and Find Full Text PDF

Cell behavior emerges from the intracellular distribution of properties like protrusion, contractility and adhesion. Thus, characteristic emergent rules of collective migration can arise from cell-cell contacts locally tweaking architecture - orchestrating self-regulation during development, wound healing, and cancer progression. The new testis-nascent-myotube-system allows dissection of contact-dependent migration in vivo at high resolution.

View Article and Find Full Text PDF

Collective cell migration has a key role in tissue morphogenesis, wound healing, tissue regeneration, and cancer invasion. In recent years, different animal models have been established to analyze how chemical and mechanical stimuli shape the behavior of single cells into tissues and organs. At present, there are still only a few model systems that allow to genetically dissect underlying molecular mechanisms driving cell motility during tissue morphogenesis at high resolution in real time.

View Article and Find Full Text PDF

The dramatic cell-shape changes involved in mitosis and cell division challenge the integrity of epithelial tissues. A new study reveals a surprising role for atypical protein kinase C in keeping apical contractility in balance and thus preventing epithelial disruption.

View Article and Find Full Text PDF

Collective migration is a key process that is critical during development, as well as in physiological and pathophysiological processes including tissue repair, wound healing and cancer. Studies in genetic model organisms have made important contributions to our current understanding of the mechanisms that shape cells into different tissues during morphogenesis. Recent advances in high-resolution and live-cell-imaging techniques provided new insights into the social behavior of cells based on careful visual observations within the context of a living tissue.

View Article and Find Full Text PDF

Cells migrate collectively to form tissues and organs during morphogenesis. Contact inhibition of locomotion (CIL) drives collective migration by inhibiting lamellipodial protrusions at cell-cell contacts and promoting polarization at the leading edge. Here, we report a CIL-related collective cell behavior of myotubes that lack lamellipodial protrusions, but instead use filopodia to move as a cohesive cluster in a formin-dependent manner.

View Article and Find Full Text PDF

Transcriptional regulation of Laminin expression during embryogenesis is a key step required for proper ECM assembly. We show, that in Drosophila the Laminin B1 and Laminin B2 genes share expression patterns in mesodermal cells as well as in endodermal and ectodermal gut primordia, yolk and amnioserosa. In the absence of the GATA transcription factor Serpent, the spatial extend of Laminin reporter gene expression was strongly limited, indicating that Laminin expression in many tissues depends on Serpent activity.

View Article and Find Full Text PDF

During metamorphosis, nascent testis myotubes migrate from the prospective seminal vesicle of the genital disc onto pupal testes and then further to cover the testes with multinucleated smooth-like muscles. Here we show that DWnt2 is likely required for determination of testis-relevant myoblasts on the genital disc. Knock down of fibroblast growth factor receptor (FGFR) by RNAi and a dominant-negative version revealed multiple functions of Heartless, namely regulation of the amount of myoblasts on the genital disc, connection of seminal vesicles and testes, and migration of muscles along the testes.

View Article and Find Full Text PDF